融合光谱和几何特征的高分辨率遥感变化检测研究

刘淑凤,申邵洪

raybet体育在线 院报 ›› 2016, Vol. 33 ›› Issue (11) : 36-42.

PDF(3201 KB)
PDF(3201 KB)
raybet体育在线 院报 ›› 2016, Vol. 33 ›› Issue (11) : 36-42. DOI: 10.11988/ckyyb.20160852
遥感技术应用

融合光谱和几何特征的高分辨率遥感变化检测研究

  • 刘淑凤1,申邵洪2
作者信息 +

Detection of the Change of High-resolution Remote Sensing ImageBased on Fusion of Spectral and Geometrical Features

  • LIU Shu-feng1, SHEN Shao-hong2
Author information +
文章历史 +

摘要

针对高分辨率遥感影像城市区域地类复杂的特点,提出了一种融合光谱和几何特征的多时相高分辨率遥感变化检测方法。在获取光谱和几何差异影像的基础上,采用模糊分类的方法,进行变化类和非变化类区分,建立各类的隶属度图像。采取基于模糊集理论的融合算法,对各种检测方法获取的隶属度图像进行有效融合,以减小部分区域的模糊度,提高变化类和非变化类的检测精度。采用城区多时相高分辨率影像为实验数据,进行各种变化检测方法的对比与分析,实验结果表明,融合光谱和几何特征的方法所获取的检测结果与光谱、几何差异影像法相比,具有检测精度高、漏检率低的特点。

Abstract

In this paper, an automatic change detection method based on fusion of spectral and geometrical features for multi-temporal high-resolution remote sensing image is proposed. Firstly, as to the characteristic of complicated classes in urban area, spectral and geometrical difference images are developed using multi-temporal images. Secondly, with difference image as input, the membership images of changed and unchanged classes are acquired using
fuzzy classification method. Thirdly, a fusion model based on fuzzy logic theory is used to combine all kinds of membership images in order to reduce the fuzziness and to distinguish the changed and unchanged classes of special areas efficiently. Finally, change detection result is obtained using threshold segmentation algorithm and accuracy evaluation is given. Multi-temporal high-resolution images of urban area are taken as experimental data, and the experimental results prove that the change detection result fusing spectral and geometrical features has higher detection precision and lower undetected ratio compared with those from spectral or geometrical difference image methods.

关键词

融合光谱 / 遥感变化 / 检测方法 / 高分辨率影像 / 模糊集

Key words

fusing spectral / remote sensing changes / detection method / high-resolution image / fuzzy set

引用本文

导出引用
刘淑凤,申邵洪. 融合光谱和几何特征的高分辨率遥感变化检测研究[J]. raybet体育在线 院报. 2016, 33(11): 36-42 https://doi.org/10.11988/ckyyb.20160852
LIU Shu-feng, SHEN Shao-hong. Detection of the Change of High-resolution Remote Sensing ImageBased on Fusion of Spectral and Geometrical Features[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(11): 36-42 https://doi.org/10.11988/ckyyb.20160852
中图分类号: TP79   

参考文献

[1] BELLENS R. Improved Classification of VHR Images of Urban Areas Using Directional Morphological Profiles. IEEE Transaction on Geosciences and Remote Sensing,2008,46(10):2803-2813.
[2]BRUZZONE L. An Adaptive Semiparametric and Context based Approach to Unsupervised Change Detection in Multitemporal Remote Sensing Images .IEEE Transaction on Image Processing,2002,11(4):452-465.
[3]FAUVEL M. Decision Fusion for the Classification of Urban Remote Sensing Images. IEEE Transaction on Geosciences and Remote Sensing, 2006,44(10):2828-2837.
[4]CHANUSSOT J. Classification of Remote Sensing Images From Urban Areas Using a Fuzzy Possibilistic Model. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1):40-44.
[5]钟家强,王润生. 基于自适应参数估计的多时相遥感图像变化检测. 测绘学报,2005,34(4):331-336.
[6]宫 鹏. 高分辨率影像解译理论与应用方法中的一些研究问题. 遥感学报,2006,10(1):1-5.
[7]姜 哲,刘 芳,张 微,等. 基于Landsat 遥感影像解译的神农架林区近30年土地覆盖动态变化.raybet体育在线 院报,2016,33(6):150-154.
[8]陈鹏霄,申邵洪. 基于多时相CBERS影像的陆生生境变化研究. raybet体育在线 院报,2011,28(2):69-73.
[9]BRUZZONE L, BOVOLO F. A Novel Framework for the Design of Change-Detection Systems for Very-High-Resolution Remote Sensing Images. Proceedings of the IEEE, 2013,101(3):609-630.
[10]JIA Lu, LI Ming, ZHANG Peng,et al. Remote-Sensing Image Change Detection with Fusion of Multiple Wavelet Kernels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(8):1-14.

基金

中央级公益性科研院所基本科研业务费项目(CKSF2015019/KJ)


PDF(3201 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map