基于PSO-LSSVM的干旱区中长期降水预测模型研究

孟锦根

raybet体育在线 院报 ›› 2016, Vol. 33 ›› Issue (10) : 36-40.

PDF(1025 KB)
PDF(1025 KB)
raybet体育在线 院报 ›› 2016, Vol. 33 ›› Issue (10) : 36-40. DOI: 10.11988/ckyyb.20160010
水资源与环境

基于PSO-LSSVM的干旱区中长期降水预测模型研究

  • 孟锦根
作者信息 +

Model of Medium-long-term Precipitation Forecasting in Arid Areas Based on PSO and LS-SVM Methods

  • MENG Jin-gen
Author information +
文章历史 +

摘要

降水量的准确预测对于干旱地区的水资源综合利用、抗旱减灾有重要意义。引入基于粒子群算法进行参数寻优的最小二乘支持向量机模型(PSO-LSSVM),构建考虑7a周期的年降水样本及考虑季节性特征的月降水样本,建立干旱区年、月尺度下的中长期降水预测模型,并应用新疆阿勒泰地区1960—2013年实测降水序列,验证模型的适用性。结果表明基于粒子群算法与最小二乘支持向量机的中长期降水预测模型预测精度高,泛化能力强,能有效地预测新疆阿勒泰地区年、月降水量。该模型为干旱区中长期降水预测提供了一种可靠的研究思路与方法。

Abstract

Precipitation forecasting in arid region is of great significance for water resources utilization and drought disaster reduction. A precipitation forecasting model in yearly and monthly scales based on particle swarm algorithm (PSO) and least squares support vector machine (LSSVM) model was established using the annual precipitation sample of a seven-year cycle and the monthly precipitation sample of seasonal characteristics. The applicability of the model was verified through the measured precipitation sequence from 1960 to 2013 in Altay region. Results show that the model based on PSO and LSSVM could effectively forecast the annual and monthly precipitation in Altay region, hence is of high precision and strong generalization ability. It offers a reliable research idea and method for medium and long-term precipitation forecast in arid areas.

关键词

粒子群算法 / 最小二乘支持向量机 / 干旱区 / 阿勒泰地区 / 降水预测

Key words

PSO / LS-SVM / arid areas / Altay region / precipitation forecasting

引用本文

导出引用
孟锦根. 基于PSO-LSSVM的干旱区中长期降水预测模型研究[J]. raybet体育在线 院报. 2016, 33(10): 36-40 https://doi.org/10.11988/ckyyb.20160010
MENG Jin-gen. Model of Medium-long-term Precipitation Forecasting in Arid Areas Based on PSO and LS-SVM Methods[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(10): 36-40 https://doi.org/10.11988/ckyyb.20160010
中图分类号: P338.9   

参考文献

[1] 于海姣, 温小虎, 冯 起,等. 基于支持向量机(SVM)的祁连山典型小流域日降水-径流模拟研究[J]. 水资源与水工程学报, 2015,(2):26-31.
[2] 于淑秋,林学椿,徐祥德.我国西北地区近50年降水和温度的变化[J].气候与环境研究,2003,8(1): 9-18.
[3] 刘彩红. 近45a新疆气候特征及异常研究[D]. 南京:南京信息工程大学, 2008.
[4] 鞠 彬, 张帅挺, 胡 丹. 额尔齐斯河流域气候变化特征分析[J]. raybet体育在线 院报, 2015, 32(9):21-25.
[5] 王文圣,丁 晶,刘国东.人工神经网络非线性时序模型在水文预报中的应用[J].四川水力发电,2000,19(增刊):8-10.
[6] 廖 杰,王文圣,李跃清,等.支持向量机及其在径流预测中的应用[J].四川大学学报(工程科学版),2006,38(6):24-28.
[7] 慕春棣,戴剑彬,叶 俊.用于数据挖掘的贝叶斯网络[J].软件学报,2000,11(5): 660-666.
[8] 韩焱红, 矫梅燕, 陈 静,等. 基于贝叶斯理论的集合降水概率预报方法研究[J]. 气象, 2013, 39(1):1-10.
[9] 甄亿位, 郝 敏, 陆宝宏,等. 基于随机森林的中长期降水量预测模型研究[J]. 水电能源科学, 2015(6):6-10.
[10]鞠 彬,胡 丹.参考作物蒸发蒸腾量计算方法在额尔齐斯河流域的适用性研究[J]. 水资源与水工程学报,2014,25(5):106-111.
[11]廖显琴,李 毅.参考作物腾发量计算方法的适用性研究[J].灌溉排水学报,2009,28(6): 14-17.
[12]VAPNIK V N. The Nature of Statistical Learning Theory[M].New York: Springer, 1995.
[13]VAPNIK V N. An Overview of Statistical Learning Theory[J]. IEEE Transactions of Neural Network, 1999, 10(5): 988-999.
[14]SUYKENS J A K, GESTEL T V, BRABANTER J D, et al. Least Squares Support Vector Machines[M]. Singapore: World Scientific Publishing Co., 2002.
[15]KENNEDY J, EBERHART R. Particle Swarm Optimization[C]∥Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ. December 1, 1995: 1942-1948.
[16]水利部水文局. 水文情报预报技术手册[M]. 北京:中国水利水电出版社, 2010.

PDF(1025 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map