河床对水沙条件变化的滞后调整过程已被众多研究者通过实测资料分析所证实。以荆江河段上的监利站为研究对象,选定平滩面积作为反映河床调整的参数,通过分析河道平滩面积调整的滞后响应过程与特点,探讨其响应调整规律,并建立与之相适应的滞后响应模型。研究表明,监利站的前期来水来沙条件对当前平滩面积调整的影响真实存在,滞后响应理论同样适用于长江荆江河段的监利站。同时,通过对适用于黄河流域的滞后响应模型(即黄河滞后响应模型)进行改进,建立了适用于监利站的平滩面积滞后响应模型。
Abstract
It has been proved by analyzing the field data that the adjustment of riverbed in alluvial river is delayed due to variations of water and sediment load. In this paper, Jianli station in Changjiang river was selected as the research object. Through analyzing process and characteristics of delayed response of the bankfull area of Jianli station, we explore the regularity of area regulation response, and establish a delayed response model, which is suitable for the regularity. The results show that, influence of incoming water and sediment of Jianli station at early period on current bankfull area’s regulation really exists, and the delayed response theory can also be used to Jianli station, located at Jingjiang segment, Changjiang river. Meanwhile, after improving the delayed response model for Yellow river, we establish the modified delayed response model of bankfull area for Jianli station.
关键词
水沙条件变化 /
冲积性河流 /
监利站 /
平滩面积 /
滞后响应 /
河床演变
Key words
variations of water and sediment /
alluvial river /
Jianli hydrological station /
bankfull area /
delayed response /
riverbed evolution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢鉴衡.河床演变及整治[M]. 北京:中国水利水电出版社,1990.
[2] LEOPOLD L. B,MADDOCK T. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications[R]. United States Geological Survey Professional Paper, 1953:57.
[3] 钱 宁,张 仁,周志德. 河床演变学[M]. 北京:科学出版社,1987.
[4] HOOKE J M. River Channel Adjustment to Meander Cutoffs on the River Bollin and River Dane, Northwest England[J]. Geomorphology, 1995, 14(3): 235-253.
[5]SURIAN N,RINALDI M.Morphological Response to River Engineering and Management in Alluvial Channels in Italy[J]. Geomorphology,2003,50(4): 307-326.
[6] 吴保生,游 涛. 水库泥沙淤积滞后响应的理论模型[J]. 水利学报,2008,39(5):627-632.
[7] 梁志勇,杨丽丰,冯普林. 黄河下游平滩河槽形态与水沙搭配之关系[J]. 水力发电学报,2005,24(6):68-71.
[8] 冉立山,王随继. 黄河内蒙古河段河道演变及水力几何形态研究[J]. 泥沙研究,2010,(4): 61-67.
[9] 胡春宏,陈建国,刘大滨,等. 水沙变异条件下黄河下游河道横断面形态特征研究[J]. 水利学报,2006,37(11):1283-1289.
[10]许炯心. 黄河下游洪水的输沙效率及其与水沙组合和河床形态的关系[J]. 泥沙研究,2009,(4):45-50.
[11]HUANG H Q. Reformulation of the Bed Load Equation of Meyer-Peter and Müller in Light of the Linearity Theory for Alluvial Channel Flow[J]. Water Resources Research, 2010, 46: W09533.
[12]刘晓芳,黄河清,邓彩云. 冲积河流稳定平衡条件与断面几何形态的数理分析[J]. 泥沙研究,2012,(1):14-22.
[13]蔺秋生,黄 莉,董耀华. 监利水文站年径流序列多时间尺度分析[J]. 水文,2009,29(4):64-67.
[14]许全喜. 三峡工程蓄水运用前后长江中下游干流河道冲淤规律研究[J]. 水力发电学报,2013,32(2):146-154.
[15]吴保生. 冲积河流河床演变的滞后响应模型——Ⅰ模型建立[J]. 泥沙研究,2008,(6):1-7.
[16]吴保生. 冲积河流河床演变的滞后响应模型——Ⅱ模型应用[J]. 泥沙研究,2008,(6):30-37.
[17]吴保生,张原锋,夏军强. 黄河下游高村站平滩面积变化分析[J]. 泥沙研究,2008,(2):34-40.
[18]李凌云. 黄河平滩流量的计算方法及应用研究[D]. 北京:清华大学,2010.
[19]李凌云,吴保生. 平滩流量滞后响应模型的该进[J]. 泥沙研究,2011,(2):21-26.
[20]李凌云,吴保生. 渭河下游平滩流量的预测[J]. 清华大学学报(自然科学版),2010,50(6):852-856.
[21]李凌云,吴保生,侯素珍. 滞后响应模型在黄河内蒙古河段的应用[J]. 水力发电学报,2011,30(1):70-77.
基金
国家自然科学基金项目(51209015,51339001)