砂土液化等级的多指标综合预测模型可以分为2种类型:第1类以砂土液化等级分类标准为基础,第2类以实例数据为基础。分别选择砂土液化分类标准生成的数据以及实例数据作为样本,采用主成分分析法对样本数据进行降维处理,以Logistic回归模型来描述砂土液化影响因素与砂土液化等级之间的对应关系,建立了2种类型的主成分-Logistic回归模型。实例应用结果显示,2种类型的主成分-Logistic回归模型都具有一定的可行性,第2种类型的主成分-Logistic回归模型预测结果更符合实际情况,在具有较多实例数据时,更具有应用价值。
Abstract
The multi-index models of predicting soil liquefaction level can be divided into two types: models based on classification standard of soil liquefaction level, and models based on instance data. In this research, instance data and data produced by stochastic interpolation based on classification standard were used as training samples. Dimension reduction of the samples was conducted through principal component analysis (PCA), and logistic regression model was adopted to describe the relationship between soil liquefaction level and its influencing factors. Hence the PCA-Logistic models were established for the two model types. Case study proves that the PCA-Logistic models are feasible in the prediction of soil liquefaction level. But the prediction result of the second type (which is based on instance data) of PCA-Logistic model is more in line with the actual situation, and especially has more practical value in the presence of more instance data.
关键词
砂土液化等级 /
影响因素 /
预测 /
主成分 /
Logistic回归模型
Key words
soil liquefaction level /
impact factor /
prediction /
principal component analysis(PCA) /
Logistic regression model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 任红梅, 吕西林, 李培振. 饱和砂土液化研究进展[J]. 地震工程与工程振动, 2007, 27(6): 166-174. (REN Hong-mei, LV Xi-lin, LI Pei-zhen. Advances in Liquefaction Research on Saturated Soils[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(6): 166-174. (in Chinese))
[2] 勾丽杰, 刘家顺. RBF神经网络模型在砂土液化判别中的应用研究[J]. raybet体育在线
院报, 2013, 30(4): 76-81. (GOU Li-jie, LIU Jia-shun. Application of RBF Neural Network Model to Evaluating Sand Liquefaction[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(4): 76-81. (in Chinese))
[3] 刘年平, 王宏图, 袁志刚, 等. 砂土液化预测的Fisher判别模型及应用[J]. 岩土力学, 2012,33(2): 554-557. (LIU Nian-ping, WANG Hong-tu, YUAN Zhi-gang, et al. Fisher Discriminant Analysis Model of Sand Liquefaction and Its Application[J]. Rock and Soil Mechanics, 2012,33(2): 554-557. (in Chinese))
[4] 陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3): 301-305. (CHEN Guo-xing, LI Fang-ming. Probabilistic Estimation of Sand Liquefaction Based on Neural Network Model of Radial Basis Function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 301-305. (in Chinese))
[5] 陈荣淋, 林建华, 黄群贤. 支持向量机在砂土液化预测中的应用研究[J]. 中国地质灾害与防治学报, 2005, 16(2): 15-18. (CHEN Rong-lin, LIN Jian-hua, HUANG Qun-xian. Application of the Support Vector Machine in Prediction of Sand Liquefaction[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(2): 15-18. (in Chinese))
[6] 薛新华, 张我华, 刘红军. 砂土地震液化的模糊综合评判法[J]. 重庆建筑大学学报, 2006, 28(1): 55-58. (XUE Xin- hua, ZHANG Wo-hua, LIU Hong- jun. Comprehensive Fuzzy Evaluation Method for Sand Liquefaction[J]. Journal of Chongqing Jianzhu University, 2006, 28(1): 55-58. (in Chinese))
[7] 金志仁. 基于距离判别分析方法的砂土液化预测模型及应用[J]. 岩土工程学报, 2008, 30(5): 776-780. (JIN Zhi-ren. Prediction of Sand Liquefaction Based on Distance Discriminant Analysis and Its Application[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 776-780. (in Chinese))
[8] 汪明武, 金菊良, 李 丽. 基于实码加速遗传算法的投影寻踪方法在砂土液化势评价中的应用[J]. 岩石力学与工程学报, 2004, 23(4): 631-634. (WANG Ming-wu, JIN Ju-liang, LI Li. Application of PP Method Based on RAGA to Assessment of Sand Liquefaction Potential[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 631-634. (in Chinese))
[9] 王 威, 苏经宇, 马东辉, 等. 饱和砂土地震液化判别的分形插值模型[J]. 世界地震工程, 2012, 28(1): 118-124. (WANG Wei, SU Jing-yu, MA Dong-hui, et al. Fractal Interpolation Model of Seismic Liquefaction Discrimination of Saturated Sandy Soil[J]. World Earthquake Engineering, 2012, 28(1): 118-124. (in Chinese))
[10]袭炯良,郏剑宁,张 扬. 主成分改进的logistic回归模型方法在流行病学分析中的应用[J]. 中国热带医学, 2005, 5(2): 207-209. (QIU Jiong-liang, ZHENG Jian-ning, ZHANG Yang. Application of Modified Logistic Regression Model in the Analysis of Epidemiology[J]. China Tropical Medicine, 2005, 5(2): 207-209. (in Chinese))
[11]叶双峰. 关于主成分分析做综合评价的改进[J]. 数理统计与管理, 2001, 20(2) : 52-61. (YE Shuang-feng. The Application and Consideration about Principal Component Analysis[J]. Application of Statistics and Management, 2001, 20(2): 52-61. (in Chinese))
[12]吴令云, 吴家祺, 吴诚鸥, 等. MINITAB软件入门:最易学实用的统计分析教程[M]. 北京:高等教育出版社,2012. (WU Ling-yun, WU Jia-qi, WU Cheng-ou, et al. MINITAB Software Starter Guide: The Easiest and Most Practical Course for Statistical Analysis[M]. Beijing: Higher Education Press, 2012. (in Chinese))
[13]陈荣淋. 基于可拓学和支持向量机理论的砂土液化势综合评价研究[D]. 厦门: 华侨大学, 2004. (CHEN Rong-lin. Research on Assessment of Sand Liquefaction Potential Based on Extenics and Support Vector Machine[D]. Xiamen: Huaqiao University, 2004. (in Chinese))