石膏质岩毛细吸水特性与孔隙特征研究

李科,贾志刚,余宏明,师华鹏

raybet体育在线 院报 ›› 2014, Vol. 31 ›› Issue (9) : 79-83.

PDF(1266 KB)
PDF(1266 KB)
raybet体育在线 院报 ›› 2014, Vol. 31 ›› Issue (9) : 79-83. DOI: 10.3969/j.issn.1001-5485.2014.09.015
岩土工程

石膏质岩毛细吸水特性与孔隙特征研究

  • 李科1,贾志刚1,2,余宏明1,师华鹏1
作者信息 +

Capillary Water Imbibition and Pore Characteristics of Gypsum Rocks

  • LI Ke1, JIA Zhi-gang1,2, YU Hong-ming1, SHI Hua-peng1
Author information +
文章历史 +

摘要

以巴东十字垭隧道石膏质岩作为研究对象,采用一维吸水方法得到石膏质岩累计吸水量随时间的变化曲线。岩石吸水曲线可分为快速吸水段和恒速吸水段,吸水量主要集中在快速吸水段,不同试件的快速吸水时间不同。随着时间增加,各试件吸水速率逐渐减小,减小速度变慢。吸水0.4h、吸水4h和快速吸水段均可以采用二次函数进行曲线拟合。干湿循环后,岩石累计吸水量增加,平均吸水速率提高,前期吸水比例增大,快速吸水时间变短。利用压汞实验,根据数据分析表明石膏质岩孔隙率较低,平均最大连通孔径2.85μm,平均孔隙直径0.88μm,孔隙分选性较差。干湿循环之后孔隙最大连通孔径及平均孔径增大,分选性提高。最后根据岩石毛细吸水量和饱和吸水量,结合压汞数据提出求取毛细吸水孔径范围的一种简单方法。

Abstract

Curves of water absorption process of gypsum rocks are obtained by using one-dimensional water absorbing method. Gypsum rocks from Shiziya tunnel are taken as research object. The water absorption processes are divided into two stages rapid absorption stage and constant speed stage. Water absorption is mainly concentrated in the first stage and different specimens have different absorption durations. With the increase of time, the water absorption velocity decreases and the decreasing slows down as well. Water absorption characteristic curves in 0.4 hour, 4 hours and the rapid absorption stage are all polynomial. After dry-wet cycling, the accumulated water absorption volume and average absorption velocity both increase, the absorption in early stage increases, and the rapid absorption stage is shortened. Through mercury injection experiment, it is found that the maximum diameter of gypsum rock is 2.85μm and average diameter is 0.88μm, indicating poor degree of sorting. After wetting-drying cycles, maximum diameter and average diameter increase and the sorting improves. Finally, a simple approach to obtain the range of effective pore diameter is presented using saturated absorption, capillary water absorption and mercury injection data.

关键词

石膏质岩 / 毛细吸水 / 干湿循环 / 孔隙特征

Key words

gypsum rocks / capillary water absorption / dry-wet cycling / porosity character

引用本文

导出引用
李科,贾志刚,余宏明,师华鹏. 石膏质岩毛细吸水特性与孔隙特征研究[J]. raybet体育在线 院报. 2014, 31(9): 79-83 https://doi.org/10.3969/j.issn.1001-5485.2014.09.015
LI Ke, JIA Zhi-gang, YU Hong-ming, SHI Hua-peng. Capillary Water Imbibition and Pore Characteristics of Gypsum Rocks[J]. Journal of Changjiang River Scientific Research Institute. 2014, 31(9): 79-83 https://doi.org/10.3969/j.issn.1001-5485.2014.09.015
中图分类号: TU451   

参考文献

[1] 杨 荣. 十字垭隧道病害原因分析及治理[J]. 铁路标准设计,2008,(10):91-95.(YANG Rong. Diseases Cause Analysis and Treatment Measures of Shiziya Tunnel[J]. Railway Standard Design,2008,(10):91-95.(in Chinese))
[2] 肖允发,杨华琨,罗 健, 等. 硬石膏水化和芒硝结晶膨胀性的测定[J]. 勘察科学技术,1985,(5):7-10.(XIAO Yun-fa, YANG Hua-kun,LUO Jian, et al. Determination of Anhydrite Hydration and Mirabilite Crystallization Expansibility[J]. Site Investigation Science and Technology,1985,(5):7-10.(in Chinese))
[3] 刘艳敏,余宏明,汪 灿,等. 白云岩层中硬石膏岩对隧道结构危害机制研究[J]. 岩土力学,2011,32(9):2704-2708.(LIU Yan-min, YU Hong-ming, WANG Can, et al. Research on Mechanism of Damage of Anhydrock in Dolomite Layer to Tunnel Structure[J]. Rock and Soil Mechanics,2011,32(9):2704-2708.(in Chinese))
[4] 吴银亮. 石膏质岩工程地质特性及其对隧道混凝土结构危害机制研究[D]. 武汉:中国地质大学,2012.(WU Yin-liang. The Engineering Geological Characteristics of Gypsum Rock and the Damage Mechanism on Tunnel Concrete Structure[D]. Wuhan:China University of Geosciences,2012.(in Chinese))
[5] 沈照理,王焰新. 水-岩相互作用研究的回顾与展望[J]. 地球科学:中国地质大学学报,2002,27(2):127-133.(SHEN Zhao-li, WANG Yan-xin. Review and Outlook of Water-Rock Interaction Studies[J]. Earth Science:Journal of China University of Geosciences,2002,27(2):127-133.(in Chinese))
[6] 何满潮,周 莉,李德建,等. 深井泥岩吸水特性试验研究[J].岩石力学与工程学报, 2008,27(6):1113-1120.(HE Man-chao, ZHOU Li, LI De-jian, et al. Experimental Research on Hydrophilic Characteristics of Mudstone in Deep Well[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(6):1113-1120.(in Chinese))
[7] 柳培玉,张 娜,何满潮, 等. 平庄煤矿砂质泥岩吸水特性试验研究[J]. 金属矿山,2011,(9): 49-53.(LIU Pei-yu, ZHANG Na, HE Man-chao, et al. Experimental Study on Water Absorption Processes of Sandy Mudstone in Pingzhuang Coal Mine[J]. Metal Mine,2011,(9): 49-53.(in Chinese))
[8] 周 莉,何满潮,李京阳,等. 砂岩吸水特性试验[J]. 解放军理工大学学报(自然科学版),2009,10(6):580-585.(ZHOU Li, HE Man-chao, LI Jing-yang,et al. Experimental Research on Hydrophilic Characteristics of Sandstone in Deep Mine[J]. Journal of PLA University of Science and Technology(Natural Science),2009,10(6):580-585.(in Chinese))
[9] 汪新光,李 茂,覃利娟,等. 利用压汞资料进行低渗储层孔隙结构特征分析——以W11-7油田流沙港组三段储层为例[J]. 海洋石油,2001,31(1):42-47.(WANG Xin-guang, LI Mao, QIN Li-juan, et al. Analysis of Pore Structure Characteristics of Low Permeability Reservoir with Mercury Injection Data:Taking E2l3 Reservoir in W11-7 Oilfield for Example[J]. Offshore Oil,2001,31(1):42-47.(in Chinese))
[10]王兆峰,孔垂显,戴雄军,等.复杂火山岩油藏储集空间类型及其有效性评价——以克拉玛依油田克92井区石炭系油藏为例[J]. 石油天然气学报,2007,(6):58-61.(WANG Zhao-feng, KONG Chui-xian, DAI Xiong-jun, et al. Reservoir Spaces and Effectiveness Evaluation on Lower Palaeozoic Reservoir of Complex Volcanic:Taking Karamay Carboniferous Reservoir in 92 Oilfield for Example[J]. Journal of Oil and Gas Technology,2007,(6):58-61.(in Chinese))

基金

国家自然科学基金项目(41272377)

PDF(1266 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map