不同掺剂对水泥土动力特性的影响

张鹏,朱珍德,王军,王海洋

raybet体育在线 院报 ›› 2014, Vol. 31 ›› Issue (5) : 62-67.

PDF(1858 KB)
PDF(1858 KB)
raybet体育在线 院报 ›› 2014, Vol. 31 ›› Issue (5) : 62-67. DOI: 10.3969/j.issn.1001-5485.2014.05.013
岩土工程

不同掺剂对水泥土动力特性的影响

  • 张鹏1,朱珍德1,王军2,王海洋3
作者信息 +

Effect of Additives on Dynamic Properties of Cement-Stabilized Soils

  • ZHANG Peng1, ZHU Zhen-de1, WANG Jun2, WANG Hai-yang3
Author information +
文章历史 +

摘要

为研究水泥土的动态特性,采用普通水泥、矿渣水泥、水玻璃3种掺剂,利用共振柱,考虑不同掺量,在不同的围压和剪切应变的条件下,水泥土的剪切模量和阻尼比的变化规律进行了试验研究。试验结果表明:水泥土的最大剪切模量随围压的增加而增加,最小阻尼比随围压的增加而降低;3种掺剂在相同围压下矿渣水泥土的动剪切模量最大,阻尼比最小;水玻璃-水泥土在刚度退化之前承受的剪应力最大;水泥土的剪应变与动剪切模量的关系符合修正的Ramberg-Osgood模型曲线。

Abstract

To research the dynamic shear modulus and damping ratio of cement-stabilized soil, the dynamic properties of three types of cemented soil were studied using resonant column test. They are cemented soil, slag cement stabilized soil, and cement with sodium silicate stabilized soil .The amount of cement admixed, the magnitude of confining pressure and the amplitude of shearing strain are considered. Test results show that with the increase of confining pressure, the maximum shear modulus of cement stabilized soil increases and the minimum damping ratio decreases. The relationship of shear modulus versus shearing strain conforms with the Ramberg-Osgood equations using regression analysis. Under the same confining pressure, slag cement stabilized soil has the largest shear modulus and the smallest damping ratio. The results also indicate that the cement with sodium silicate stabilized soil is able to sustain larger shearing strain before stiffness degradation than the other additives do.

关键词

水泥土 / 共振柱试验 / 剪切模量 / 阻尼比

Key words

cement stabilized soil / resonant column test / shear modulus / damping ratio

引用本文

导出引用
张鹏,朱珍德,王军,王海洋. 不同掺剂对水泥土动力特性的影响[J]. raybet体育在线 院报. 2014, 31(5): 62-67 https://doi.org/10.3969/j.issn.1001-5485.2014.05.013
ZHANG Peng, ZHU Zhen-de, WANG Jun, WANG Hai-yang. Effect of Additives on Dynamic Properties of Cement-Stabilized Soils[J]. Journal of Changjiang River Scientific Research Institute. 2014, 31(5): 62-67 https://doi.org/10.3969/j.issn.1001-5485.2014.05.013
中图分类号: TV443.9   

参考文献

[1] 袁晓铭,孙 锐,孙 静,等. 常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程振动,2000,20(4):133-139.(YUAN Xiao-ming, SUN Rui, SUN Jing, et al. Laboratory Experimental Study on Dynamic Shear Modulus Ratio and Damping Ratio Soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4):133-139. (in Chinese))
[2] DUPAS J M, DECKER A. Static and Dynamic Properties of Sand Cement[J]. Journal of Geotechnical Engineering, ASCE, 1979,105(3): 419-436.
[3] CONSOLI N C, VIANA DA FONSECA A, CRUZ R C, et al. Fundamental Parameters for the Stiffness and Strength Control of Artificially Cemented Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9):1347-1353.
[4] ACAR Y B, EL-TAHIR A E. Low Strain Dynamic Properties of Artificially Cemented Sand[J]. Journal of Geotechnical Engineering,ASCE,1986,112(11):1001-1015.
[5] SAXENA S K, AVRAMIDIS A S, REDDY K R. Dynamic Moduli and Damping Ratios for Cemented Sands at Low Strains[J]. Canadian Geotechnical Journal, 1988, 25(2): 353-368.
[6] SHAMBHU S. Sharma and Martin Fahey, Degradation of Stiffness of Cemented Calcareous Soil in Cyclic Triaxial Tests[J].Journal of Geotechnical and Geoenvirinmental Engineering ,ASCE,2003,129(7):619-628.
[7] SHARMA S, FAHEY M. Evaluation of Cyclic Shear Strength of Two Cemented Calcareous Soils[J].Journal of Geotechnical and Geoenvironmental Engineering, 2005, 129(7):608-618.
[8] CHIANG Y C, CHAE Y S. Dynamic Properties of Cement-treated Soils[C]∥Highway Research Record No.379, Washington D C: National Research Council, Highway Research Board, 1972: 39-51.
[9] RAD N S, CLOUGH G W. The Influence of Cementation on the Static and Dynamic Behavior of Sands Report No. 59 [R]. Palo Alto, California: John Blume Earthquake Engineering Center, Stanford University, 1982.
[10]CLOUGH G W, IWABUCHI J, RAD N S, et al. Influence of Cementation on Liquefaction of Sands[J]. Journal of Geotechnical Engineering, ASCE, 1989,115(8):1102-1117.
[11]FRYDMAN S, HENDRON D, HORN H, et al. Liquefaction Study of Cemented Sand[J]. Journal of Geotechnical Engineering, ASCE, 1980, 106(3): 275-297.
[12]LIYANAPATHIRANA D S, CARTER J P, LIU M D. Numerical Modelling of Soft Ground Improved with Cement[C]∥Proceedings of GeoShanghai International Conference 2006:Ground Modification and Seismic Mitigation, Shanghai, China, June 6-8, 2006: 37-44.
[13]PANTAZOPOULOS I A, ATMATZIDIS D K. Dynamic Properties of Microfine Cement Grouted Sands[J]. Soil Dynamics and Earthquake Engineering, 2012, 42(5): 17-31.
[14]陈颖平,陈云敏,黄 博.循环荷载作用下结构性软黏土特性的试验研究[D].杭州:浙江大学,2007. (CHEN Ying-ping, CHEN Yun-min, HUANG Bo. Experimental Study on the Properties of Structural Soft Clay under Cyclic Loading[D]. Hangzhou: Zhejiang University, 2007. (in Chinese))
[15]谢定义.土动力学[M].北京:高等教育出版社,2011. (XIE Ding-yi. Soil Dynamics[M]. Beijing: Higher Education Press, 2011. (in Chinese))
[16]栾茂田.土动力非线性分析中的变参数Ramberg-Osgood本构模型[J].地震工程与工程振动,1992,12(2):69-78. (LUAN Mao-tian. Ramberg-Osgood Constitutive Model with Variable Parameters for Dynamic Nonlinear Analysis of Soils[J]. Earthquake Engineering and Engineering Vibration, 1992,12(2):69-78. (in Chinese))

基金

国家自然科学基金(51278383, 51238009, 51025827);国家重点基础研究发展973计划资助项目(2011CB411907);浙江省自然科学基金项目(Y1110751)

PDF(1858 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map