土-格栅界面强度参数和剪切刚度试验研究

张俊峰, 王协群, 邹维列, 温家华

raybet体育在线 院报 ›› 2014, Vol. 31 ›› Issue (3) : 77-83.

PDF(1119 KB)
PDF(1119 KB)
raybet体育在线 院报 ›› 2014, Vol. 31 ›› Issue (3) : 77-83. DOI: 10.3969/j.issn.1001-5485.2014.03.012
试验研究

土-格栅界面强度参数和剪切刚度试验研究

  • 张俊峰1a, 1b, 王协群1a, 2, 邹维列1a, 1b, 温家华3
作者信息 +

Experimental Study on Shear Strength Parameters and Shear Stiffness Behavior of Soil-Geogrid Interface

  • ZHANG Jun-feng1, 2, WANG Xie-qun1, 3, ZOU Wei-lie1, 2, WEN Jia-hua4
Author information +
文章历史 +

摘要

以4种不同土工格栅和2种不同填料为试验材料, 完成了不同填料初始状态(含水率、干密度)和不同剪切速率的筋-土界面特性直剪试验, 详细分析了不同工况对界面强度参数和剪切刚度的影响。结果表明:①填料压实度的增大和剪切速率的增大会分别引起格栅-砂砾石界面抗剪强度参数的增大;②格栅-砂砾石界面的抗剪强度参数和剪切刚度明显都大于格栅-黏土界面;③格栅-黏土界面似黏聚力和内摩擦角随着填料含水率的增大而显著降低, 而且格栅-黏土界面强度参数对含水率比黏土本身更为敏感;④现行规范中对格栅-土界面摩擦因数比的推荐值为0.8是合适的, 但是总结文献发现, 拉拔试验所得到的筋-土界面强度参数都远小于直剪试验;⑤法向压力的增加、填料压实度的增加、黏土填料含水率的减小以及剪切速率的减小都会使筋土界面剪切刚度明显增大;⑥在采用的4种格栅中, 纵肋较短的单向格栅-砂砾石界面的剪切刚度最大, 其余3种格栅的筋土界面剪切刚度比较接近。

Abstract

Direct shear tests were conducted on soil-grid interfaces composed of 4 types of geogrids and 2 types of soils to investigate the characteristics of geogrid-soil interface. The influencing factors including the initial state of soils (water content and dry density) and shearing rate on the shearing strength parameters and shearing stiffness were examined. The results indicated that: (1) With regard to geogrid-sandy gravel interfaces, higher impaction degree or shearing rate resulted in larger shear strength. (2) Both the shear strength parameters and shear stiffness of geogrid-sandy gravel interface were significantly higher than those of geogrid-clay interface. (3) Both the cohesion and the internal friction angle of geogrid-clay interface decrease remarkably with the increase of water content. The strength of geogrid-clay interface is more sensitive to water content than clay itself. (4) The recommended value of friction factor ratio (0.8) in current codes is suitable. But according to literatures it was found that the shear strength of the interface obtained from pull-out test was much smaller than that from direct shear test. (5) All the factors including the increasing of vertical stress and degree of compaction, the decreasing of water content and shearing rate would result in the apparent increase of shear stiffness. (6) The shear stiffness of the interface between uniaxial geogrid with short longitudinal ribs and sandy gravel was the largest, and the other three geogrids showed similar interface shear stiffness.

关键词

土工格栅 / 填料 / 界面强度 / 剪切刚度

Key words

geogrid / filling / interface shear strength / shear stiffness

引用本文

导出引用
张俊峰, 王协群, 邹维列, 温家华. 土-格栅界面强度参数和剪切刚度试验研究[J]. raybet体育在线 院报. 2014, 31(3): 77-83 https://doi.org/10.3969/j.issn.1001-5485.2014.03.012
ZHANG Jun-feng, WANG Xie-qun, ZOU Wei-lie, WEN Jia-hua. Experimental Study on Shear Strength Parameters and Shear Stiffness Behavior of Soil-Geogrid Interface[J]. Journal of Changjiang River Scientific Research Institute. 2014, 31(3): 77-83 https://doi.org/10.3969/j.issn.1001-5485.2014.03.012
中图分类号: TU432   

参考文献

[1] 包承纲. 土工合成材料界面特性的研究和试验验证[J]. 岩石力学与工程学报, 2006, 25(9): 1735-1744. (BAO Cheng-gang. Study on Interface Behavior of Geosynthetics and Soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1735-1744. (in Chinese))
[2] LIU C N, GILBERT R B. Simplified Method for Estimating Geosynthetic Loads in Landfill Liner Side Slopes During Filling [J]. Geosynthetics International, 2003, 10(1): 24-33.
[3] SAWWAF M A. Behavior of Strip Footing on Geogrid-reinforced Sand over a Soft Clay Slope [J]. Geotextiles and Geomembranes, 2007, 25(1): 50-60.
[4] 汪明元, 李齐仁, 施戈亮. 干密度对土工格栅与膨胀土界面拉拔性状的影响[J]. 武汉大学学报(工学版), 2010, 43(1): 81-84. (WANG Ming-yuan, LI Qi-ren, SHI Ge-liang. Effect of Dry Density on Pull-out Behaviors of Interface Between Geogrids and Compacted Expansive Soils[J]. Engineering Journal of Wuhan University, 2010, 43(1): 81-84.(in Chinese))
[5] 李齐仁, 汪明元, 蔡剑韬, 等. 含水率对土工格栅与膨胀土界面拉拔性状的影响[J]. 岩土力学, 2010, 31(2): 175-178. (LI Qi-ren, WANG Ming-yuan, CAI Jian-tao, et al. Effect of Water Content on Pull-out Behavior of Interface Between Geogrid and Compacted Expansive Soil[J]. Rock and Soil Mechanics, 2010, 31(2): 175-178.(in Chinese))
[6] 汪明元, 龚晓南, 包承纲, 等. 土工格栅与压实膨胀土界面的拉拔性状[J]. 工程力学, 2009, 26(11):145-151. (WANG Ming-yuan, GONG Xiao-nan, BAO Cheng-gang, et al. Pull-out Behavior of the Interface Between Geogrid and Compacted Expansive Soil[J]. Engineering Mechanics, 2009, 26(11): 145-151.(in Chinese))
[7] 徐林荣, 凌建明, 刘宝琛. 土工格栅与膨胀土界面摩擦阻力系数试验研究[J]. 同济大学学报(自然科学版), 2004, 32(2): 172-176. (XU Lin-rong, LING Jian-min, LIU Bao-chen. Experiment on Interface Friction Coefficient Parameters between Geogrids and Expansive Soil[J]. Journal of Tongji University(Natural Science), 2004, 32(2): 172-176.(in Chinese))
[8] 杨广庆, 李广信, 张保俭. 土工格栅界面摩擦特性试验研究[J]. 岩土工程学报, 2006, 28(8): 948-952. (YANG Guang-qing, LI Guang-xin, ZHANG Bao-jian. Experimental Studies on Interface Friction Characteristics of Geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948-952.(in Chinese))
[9] 张文慧, 王保田, 张福海, 等. 双向土工格栅与黏土界面作用特性试验研究[J]. 岩土力学, 2007, 28(5): 1031-1034. (ZHANG Wen-hui, WANG Bao-tian, ZHANG Fu-hai, et al. Test Study on Interaction Characteristics Between Two-way Geogrids and Clay[J]. Rock and Soil Mechanics, 2007, 28(5): 1031-1034.(in Chinese))
[10]史旦达, 刘文白, 水伟厚, 等. 单、双向塑料土工格栅与不同填料界面作用特性对比试验研究[J]. 岩土力学, 2009, 30(8):2237-2244. (SHI Dan-da, LIU Wen-bai, SHUI Wei-hou, et al. Comparative Experimental Studies of Interface Characteristics between Uniaxial/biaxial Plastic Geogrids and Different Soils[J]. Rock and Soil Mechanics, 2009, 30(8):2237-2244.(in Chinese))
[11]徐 超, 廖星樾. 土工格栅与砂土相互作用机制的拉拔试验研究[J]. 岩土力学, 2011, 32(2): 423-428. (XU Chao, LIAO Xing-yue. Researches on Interaction Mechanism Between Geogrid and Sand by Pull-out Tests[J]. Rock and Soil Mechanics, 2011, 32(2): 423-428.(in Chinese))
[12]尹光志, 张东明, 魏作安, 等. 土工合成材料与细粒尾矿界面作用特性的试验研究[J]. 岩石力学与工程学报, 2004, 23(3): 426-429. (YIN Guang-zhi, ZHANG Dong-ming, WEI Zuo-an, et al. Testing Study on Interaction Characteristics Between Fine Grained Tailings and Geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(3): 426-429.(in Chinese))
[13]汤 飞, 李广信, 金 焱, 等. 单向塑料土工格栅与土界面作用特性的试验研究[J]. 水力发电学报, 2006, 25(6): 67-72. (TANG Fei, LI Guang-xin, JIN Yan, et al. Experimental Study on the Interaction Characteristics Between Single Direction Plastic Geogrid and Soil[J]. Journal of Hydroelectric Engineering, 2006, 25(6):67-72.(in Chinese))
[14]JTG/T D32—2012, 公路土工合成材料应用技术规范 [S]. 北京: 人民交通出版社, 2012. (JTG/T D32—2012, Technical Specifications for Application of Geosynthetics in Highway [S]. Beijing: China Communications Press, 2012. (in Chinese))
[15]SL/T225—98, 水利水电工程土工合成材料应用技术规范[S]. 北京:中国水利水电出版社, 1998. (SL/T225—98, Standard for Applications of Geosynthetics in Hydraulic and Hydropower Engineering [S]. Beijing: China Water Power Press, 1998.(in Chinese))
[16]JTJ051—91, 公路加筋土工程设计规范 [S]. 北京: 人民交通出版社, 1991.(JTJ051—91, Specifications for Design of Highway Reinforced Earth Engineering [S]. Beijing: China Communications Press, 1991.(in Chinese))
[17]TB 10118—2006, 铁路路基土工合成材料应用技术规范[S]. 北京: 中国铁道出版社, 2006.(TB 10118——2006, Code for Design for Applications of Geosynthetics on Subgrade of Railway[S]. Beijing: China Railway Press, 2006.(in Chinese))
[18]徐 超, 孟凡祥. 剪切速率和材料特性对筋-土界面抗剪强度的影响[J].岩土力学, 2010, 31(10):3101-3106.(XU Chao, MENG Fan-xiang. Effects of Shear Rate and Material Properties on Shear Strength of Geosynthetic-soil Interface[J]. Rock and Soil Mechanics, 2010, 31(10): 3101-3106.(in Chinese))
[19]董彦莉.土工格栅加筋砂土的特性研究及加筋垫层的承载力计算[D].太原:太原理工大学, 2011. (DONG Yan-li. Analysis on Characteristic of Geogrid Reinforced Sand and Bearing Capacity of Geosynthetics Reinforced Cushion [D]. Taiyuan: Taiyuan University of Technology, 2011. (in Chinese))

基金

国家自然科学基金资助项目(51109171); 岩土与结构工程安全湖北省重点实验室开放研究基金项目(HBKLCIV201209);国家留学基金委资助(留金发【2013】3018)

PDF(1119 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map