因水库下游的地形、边界、糙率等存在明显不同,城市水库溃坝后的下泄演进与山区水库可能存在显著差异。针对城市水库下游区域建筑物众多、糙率复杂的特点,利用地理信息系统(GIS)技术生成高仿真的数字高程模型(DEM),对不同地表类型赋予不同的糙率值并生成糙率场。以深圳龙口水库为例,利用MIKE21水动力模块构建溃坝洪水演进模型,假设主坝瞬间全溃后对下泄洪水进行演进模拟。计算结果表明:模型能较好地模拟城区建筑物的雍水效应,较能反映城市主干道在洪水演进过程中的引导作用以及局部地区洪水迅速涨落和消退的特点,说明高仿真的DEM和多元分布的糙率场对保证城市水库溃坝模拟演进的合理性具有重要作用。
Abstract
Flood propagation after dam break in urban areas is greatly different from that in mountainous areas because of disparities in terrain, boundary, and roughness coefficient. Areas in the downstream of urban reservoir has numerous buildings and complex roughness, so it’s difficult to process urban terrain data. To solve this problem, we built a high fidelity digital elevation model (DEM) by using GIS technology, and assigned different coefficients of roughness corresponding to different land surfaces, and generated a roughness field. Subsequently we took Longkou Reservoir in Shenzhen City as a case study to built a model of flood propagation caused by sudden dam-break suitable for urban area based on Hydrodynamics of MIKE21. Computation result demonstrates that the model could well simulate the backwater affected by buildings, and could reflect the guidance of urban trunk road for flood propagation, and also explains the rapid rise and regression of flood in some local areas. High fidelity DEM and multivariate distribution of roughness coefficients could improve the accuracy and rationality of simulating flood propagation after dam-break in urban areas.
关键词
水库溃坝 /
洪水演进模型 /
数值模拟 /
MIKE21 /
GIS
Key words
dam-break /
model of flood propagation /
numerical simulation /
MIKE21 /
GIS
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘玉玲,王玲玲,周孝德,等. 二维溃坝洪水波传播的高精度数值模拟[J]. 自然灾害学报,2010,19(5):164-169. (LIU Yu-ling, WANG ling-ling, ZHOU Xiao-de, et al. High-resolution Numerical Simulation of 2D Dam-break Flood Waves[J]. Journal of Natural Disasters, 2010, 19(5):164-169. (in Chinese))
[2] GALLEGOS H A,SANDERS B F,SCHUBERT J E. Two-dimensional, High-resolution Modeling of Urban Dam-break Flooding: A Case Study of Baldwin Hills, California[J]. Advances in Water Resources,2009,32(8):1323-1335.
[3] SHAKIBAEINIA A,JIN Y C. A Mesh-free Particle Model for Simulation of Mobile-bed Dam Break[J]. Advances in Water Resources,2011,34(6):794-807.
[4] PETACCIA G,SOARES-FRAZO S,SAVI F,et al. Simplified Versus Detailed Two-dimensional Approaches to Transient Flow Modeling in Urban Areas[J]. Journal of Hydraulic Engineering,2010,136(4):262-266.
[5] 王晓玲,张爱丽,陈华鸿,等. 三维溃坝洪水在复杂淹没区域演进的数值模拟[J]. 水利学报,2012,43(9):1025- 1033. (WANG Xiao-ling, ZHANG Ai-li, CHEN Hua-hong, et al. Three-dimensional Numerical Simulation of Dam-break Flood Routing in the Complex Inundation Areas[J]. Journal of Hydraulic Engineering, 2012, 43(9):1025-1033. (in Chinese))
[6] 谢任之. 溃坝水力学[M]. 济南:山东科学技术出版社,1993.(XIE Ren-zhi. Dam-break Hydraulics[M]. Jinan: Shandong Science and Technology Press, 1993. (in Chinese))
[7] 张 玮,钟春欣,应翰海. 草皮护坡水力糙率实验研究[J]. 水科学进展,2007,18(4):483-489. (ZHANG Wei, ZHONG Chun-xin, YING Han-hai. Experimental Study on Hydraulic Roughness of Revetment with Grass Cover[J]. Advances in Water Science, 2007, 18(4):483-489. (in Chinese))
[8] 曾 祥,黄国兵,段文刚. 混凝土渠道糙率调研综述[J]. raybet体育在线
院报,1999,16(6):1-4. (ZENG Xiang, HUANG Guo-bing, DUAN Wen-gang. Summarization of Investigation on Roughness of Concrete Channels[J]. Journal of Yangtze River Scientific Research Institute, 1999, 16(6):1-4.(in Chinese))
[9] 落全富,安莉娜. 青山水库溃坝洪水模拟计算[J]. 浙江水利科技,2010,(2):17-19. (LUO Quan-fu, AN Li-na. Simulated Calculation of Dam Break Flood for Qingshan Reservoir[J]. Zhejing Hydrotechnics, 2010,(2):17-19. (in Chinese))
[10]魏文礼,沈永明,孙广才,等. 二维溃坝洪水波演进的数值模拟[J]. 水利学报,2003,(9):43-46. (WEI Wen-li, SHEN Yong-ming, SUN Guang-cai, et al. Numerical Simulation of 2D Dam-break Flood Wave[J]. Journal of Hydraulic Engineering,2003,(9):43-46. (in Chinese))
[11]郭洪巍,吴葱葱. 逐渐溃坝和瞬时溃坝的模拟研究与比较[J]. 东北水利水电,2000,18(2):1-3. (GUO Hong-wei, WU Cong-cong. Comparison and Research between Gradual and Instantaneous Dam Break Mathematical Model[J]. Water Resource & Hydropower of Northeast, 2000, 18(2):1-3. (in Chinese))
基金
亚热带建筑科学国家重点实验室项目(2011ZC24,2013ZC04);广东省交通运输厅科技项目(2013-02-043)