潜水入渗补给研究进展

吴庆华, 张家发, 严敏, 王贵玲, 杨润生

raybet体育在线 院报 ›› 2014, Vol. 31 ›› Issue (10) : 89-97.

PDF(1091 KB)
PDF(1091 KB)
raybet体育在线 院报 ›› 2014, Vol. 31 ›› Issue (10) : 89-97. DOI: 10.3969/j.issn.1001-5485.2014.10.013
水资源与环境

潜水入渗补给研究进展

  • 吴庆华1, 张家发1, 严敏1, 王贵玲2, 杨润生3
作者信息 +

Groundwater Recharge for Unconfined Aquifers: A Review

  • WU Qing-hua1, ZHANG Jia-fa1, YAN Min1,WANG Gui-ling2, YANG Run-sheng3
Author information +
文章历史 +

摘要

目前,对土壤水运移机理研究已从定性走向定量、从均质走向非均质。优先流是地下水入渗的普遍现象,在田间土壤水主要以捷径流方式入渗补给地下水。对优先流研究是潜水入渗补给研究的重点与难点之一,其主要方法为染色示踪与X射线成像和地质雷达技术。潜水入渗补给评价方法众多,且每种方法都有其适用条件。因此,综合采用示踪法、地下水位波动法、地中渗透仪法、零通量法和数值模拟法,相互对比验证,提高评价可靠性,是研究地下水入渗补给最有效的方法。

Abstract

Soil water infiltration is a main approach of groundwater recharge for the unconfined aquifers. Research on the mechanism of soil water transport has transferred from perspectives of qualitative to quantitative, and from homogenous to heterogeneous. Preferential flow is a prevalent phenomenon of groundwater recharge, which indicates that soil water infiltrates into the unconfined aquifers in the way of shortcut flow. Research on preferential flow is an important and difficult topic, with dyeing tracing, x ray microtomography and ground penetrating radar as main methods. Many of methods, e.g., tracing, groundwater level fluctuation, lysimeters, zero flux plane and numerical model, for the evaluation of groundwater recharge, are used in different conditions, therefore, we advise that the groundwater recharge is evaluated using several methods together by comparison and verification to improve assessment reliability.

关键词

潜水 / 土壤水 / 优先流 / 入渗 / 补给

Key words

unconfined groundwater / soil water / preferential flow / infiltration / recharge

引用本文

导出引用
吴庆华, 张家发, 严敏, 王贵玲, 杨润生. 潜水入渗补给研究进展[J]. raybet体育在线 院报. 2014, 31(10): 89-97 https://doi.org/10.3969/j.issn.1001-5485.2014.10.013
WU Qing-hua, ZHANG Jia-fa, YAN Min,WANG Gui-ling, YANG Run-sheng. Groundwater Recharge for Unconfined Aquifers: A Review[J]. Journal of Changjiang River Scientific Research Institute. 2014, 31(10): 89-97 https://doi.org/10.3969/j.issn.1001-5485.2014.10.013
中图分类号: P641   

参考文献

[1] 雷志栋, 胡和平, 杨诗秀. 土壤水研究进展与评述[J]. 水科学进展, 1999, 10(3): 311-318. (LEI Zhi-dong, HU He-ping, YANG Shi-xiu. A Review of Soil Water Research[J]. Advances in Water Science, 1999, 10(3): 311-318. (in Chinese))
[2] 高 峰, 李建平, 王黎黎, 等. 土壤水运动理论研究综述[J]. 湖北农业科学, 2009, 48(4): 982-986. (GAO Feng, LI Jian-ping, WANG Li-li, et al. Review on Theoretic Research of Soil Water Movement[J]. Hubei Agricultural Sciences, 2009, 48(4): 982-986. (in Chinese))
[3] 张北赢, 徐学选, 李贵玉, 等. 土壤水分基础理论及其应用研究进展[J]. 中国水土保持科学, 2007, 5(2): 122-129. (ZHANG Bei-ying, XU Xue-xuan, LI Gui-yu, et al. Review of the Research on the Basic Theoretics and Its Application of Soil Water[J]. Science of Soil and Water Conservation, 2007, 5(2): 122-129. (in Chinese))
[4] 杨文治, 马玉玺, 韩仕峰, 等. 黄土高原地区造林土壤水分生态分区研究[J]. 水土保持学报, 1993, 8(1): 1-9. (YANG Wen-zhi, MA Yu-xi, HAN Shi-feng, et al. Soil Water Ecological Regionalization of Afforestation in Loess Plateau[J]. Journal of Soil and Water Conservation, 1993, 8(1): 1-9. (in Chinese))
[5] 李玉山. 土壤水分状况与作物生长[J]. 土壤学报, 1962, 10(3): 289-304. (LI Yu-shan. Soil Water and Plant Growth[J]. Acta Pedologica Sinica, 1962, 10(3): 289-304. (in Chinese))
[6] 邵明安, 杨文治, 李玉山. 植物根系土壤水分的数值模型[J]. 土壤学报, 1987, 24(4): 295-305. (SHAO Ming-an, YANG Wen-zhi, LI Yu-shan. Soil Water Model of Plant Root[J]. Acta Pedologica Sinica, 1987, 24(4): 295-305. (in Chinese))
[7] 庄季屏. 四十年来的中国土壤水分研究[J]. 土壤学报, 1989, 26(3): 241-248. (ZHUANG Ji-ping. 40 Years Soil Water Research in China[J]. Acta Pedologica Sinica, 1989, 26(3): 241-248. (in Chinese))
[8] 张蔚榛. 地下水与土壤水动力学[M].北京: 中国水利水电出版社,1996. (ZHANG Wei-zhen. Groundwater and Soil Water Dynamics[M]. Beijing: China Water Power Press, 1996. (in Chinese))
[9] 张蔚榛. 包气带水分运移问题讲座(一):包气带水分运移基本方程[J]. 水文地质工程地质,1981,7(1):45-49. (ZHANG Wei-zhen. Lecture (Ⅰ) of the Soil Water Movement: Equations of Soil Water Movement[J]. Hydrogeology & Engineering Geology, 1981, 7(1):45-49. (in Chinese))
[10]张蔚榛,张瑜芳. 包气带水分运移问题讲座(二):土壤水运动参数测定方法[J]. 水文地质工程地质, 1981,7(2):57-63. (ZHANG Wei-zhen, ZHANG Yu-fang. Lecture (Ⅱ) of the Soil Water Movement: Measured Methods for Parameters of Soil Water Movement[J]. Hydrogeology & Engineering Geology, 1981, 7(2):57-63. (in Chinese))
[11]张蔚榛,张瑜芳. 包气带水分运移问题讲座(四):蒸发条件下土壤水运动(上)[J]. 水文地质工程地质,1981, 7(4):55-59. (ZHANG Wei-zhen, ZHANG Yu-fang. Lecture (Ⅳ) of the Soil Water Movement: Soil Water Movement on the Condition of Evaporation[J]. Hydrogeology & Engineering Geology, 1981, 7(4):55-59. (in Chinese))
[12]张蔚榛,张瑜芳. 包气带水分运移问题讲座(五):蒸发条件下土壤水运动(下)[J]. 水文地质工程地质,1981,7(5):66-70. (ZHANG Wei-zhen, ZHANG Yu-fang. Lecture (Ⅴ) of the Soil Water Movement: Soil Water Movement on the Condition of Evaporation[J]. Hydrogeology & Engineering Geology, 1981, 7(5):66-70. (in Chinese))
[13]雷志栋. 土壤水动力学[M]. 北京:清华大学出版社,1988. (LEI Zhi-dong. Soil Water Dynamics[M]. Beijing: Tsinghua University Press, 1988. (in Chinese))
[14]王全九, 王文焰, 邵明安. 浑水入渗机制及模拟模型研究[J]. 农业工程学报, 1999, 15(1): 135-138. (WANG Quan-jiu, WANG Wen-yan, SHAO Ming-an. Mechanism and Simulating Model for Muddy Water Infiltration[J]. Transactions of the CSAE, 1999, 15(1): 135-138. (in Chinese))
[15]汪志荣, 王文焰, 王全九, 等. 浑水波涌灌溉入渗机制及其Green-Ampt 模型[J]. 水利学报, 1998,(10): 44-48. (WANG Zhi-rong, WANG Wen-yan,WANG Quan-jiu, et al. The Green-Ampt Model and Infiltration Characteristics of Surge Flow Irrigation for Muddy Water[J]. Shuili Xuebao, 1998, (10): 44-48. (in Chinese))
[16]李 毅, 王全九, 邵明安, 等. Green-Ampt入渗模型及其应用[J]. 西北农林科技大学学报, 2007, 35(2): 225-230. (LI Yi, WANG Quan-jiu, SHAO Ming-an, et al. Green-Ampt Model and Its Application[J]. Journal of Northwest A & F University ( Natural Science Edition), 2007, 35(2): 225-230. (in Chinese))
[17]王文焰,汪志荣, 王全九, 等. 黄土中Green -Ampt入渗模型的改进与验证[J]. 水利学报, 2003, (5):30-34. (WANG Wen-yan, WANG Zhi-rong, WANG Quan-jiu, et al. Improvement and Verification of Green-Ampt model in Loess Soil[J]. Shuili Xuebao, 2003, (5): 30-34. (in Chinese))
[18]王全九, 邵明安, 汪志荣, 等. Green-Ampt 公式在层状土入渗模拟计算中的应用[J]. 土壤侵蚀与水土保持学报, 1999, 5(4): 66-70. (WANG Quan-jiu, SHAO Min-an, WANG Zhi-rong, et al. Application of Green-Ampt Equation During Infiltration in Layered Soil[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(4): 66-70. (in Chinese))
[19]赵伟霞, 谢恒星, 张振华, 等. 恒定水头井入渗 Green-Ampt模型的改进与验证[J]. 水利学报, 2010, 41(4): 464-470. (ZHAO Wei-xia, XIE Heng-xing, ZHANG Zhen-hua, et al. Improvement and Verification of the Green-Ampt Model for Constant-head Well Permeameter[J]. Shuili Xuebao, 2010, 41(4): 464-470. (in Chinese))
[20]郭向红, 孙西欢, 马娟娟, 等. 不同入渗水头条件下的Green-Ampt 模型[J]. 农业工程学报, 2010, 26(3): 64-68. (GUO Xiang-hong, SUN Xi-huan, MA Juan-juan, et al. Green-Ampt Model of Different Infiltration Heads[J]. Transactions of the CSAE, 2010, 26(3): 64-68. (in Chinese))
[21]马 英, 冯绍元, 刘晓东, 等. 考虑禁锢空气影响的层状土壤Green-Ampt入渗模型及试验验证[J]. 水利学报, 2011, 42(9): 1034-1043. (MA Ying, FENG Shao-yuan, LIU Xiao-dong, et al. A Modified Green-Ampt Model for Water Infiltration in Layered Soils with Air Entrapment and Its Experimental Validation [J]. Shuili Xuebao, 2011, 42(9):1034-1043. (in Chinese))
[22]BEVEN K, GERMANN P. Macropores and Water Flow in Soils [J]. Water Resources Research, 1982, 18(5): 1311.
[23]程竹华, 张佳宝. 土壤中优势流现象的研究进展[J]. 土壤, 1998,(6): 315-331. (CHENG Zhu-hua, ZHANG Jia-bao. A Review: Preferential Flow of the Soil[J]. Soil, 1998,(6): 315-331. (in Chinese))
[24]LARSSON M, JARVIS N, TORSTENSSON G, et al. Quantifying the Impact of Preferential Flow on Solute Transport to Tile Drains in a Sandy Field Soil[J]. Journal of Hydrology, 1999, 215(1-4): 116-134.
[25]MAYA B, ACHIM A, PASCAL F, et al. Impact of Preferential Flow on Radionuclide Distribution in Soil[J]. Environmental Science & Technology, 2000, 34(18): 3895-3899.
[26]BUNDT M, WIDMER F, PESARO M, et al. Preferential Flow Paths: Biological ‘Hot Spots’ in Soils[J]. Soil Biology and Biochemistry, 2001, 33(1): 729-738.
[27]MOONEY S J, NIPATTASUK W. Quantification of the Effects of Soil Compaction on Water Flow Using Dye Tracers and Image Analysis[J]. Soil Use and Management, 2003, 19(4): 356-363.
[28]WEILER M, FLHLER H. Inferring Flow Types from Dye Patterns in Macroporous Soils[J]. Geoderma, 2004, 120(1/2):137-153.
[29]JARVIS N, ETANA A, STAGNITTI F. Water Repellency, Near-Saturated Infiltration and Preferential Solute Transport in a Macroporous Clay Soil[J]. Geoderma, 2008, 143(3/4): 223-230.
[30]WUEST S B. Comparison of Preferential Flow Paths to Bulk Soil in a Weakly Aggregated Silt Loam Soil[J]. Vadose Zone Journal, 2009, 8(3): 623.
[31]HARPOLD A A, LYON S W, TROCH P A, et al. The Hydrological Effects of Lateral Preferential Flow Paths in a Glaciated Watershed in the Northeastern USA[J]. Vadose Zone Journal, 2010, 9(2): 397.
[32]ALAOUI A, CADUFF U, GERKE H H, et al. Preferential Flow Effects on Infiltration and Runoff in Grassland and Forest Soils[J]. Vadose Zone Journal, 2011, 10(1): 367.
[33]FORRER I, A P, R.KASTEEL, et al. Quantifying Dye Tracers in Soil Profiles by Image Processing[J]. European Journal of Soil Science, 2000, 51(2):313-322.
[34]FLURY M. Dyes as Tracers for Vadose Zone Hydrology[J]. Reviews of Geophysics, 2003, 41(1):2-37.
[35]HARDIE M A, COTCHING W E, DOYLE R B,et al. Effect of Antecedent Soil Moisture on Preferential Flow in A R Texture-contrast Soil[J]. Journal of Hydrology, 2011, 398(3/4): 191-201.
[36]PIUELA J, ALVAREZ A, ANDINA D, et al. Quantifying A Soil Pore Distribution from 3D Images: Multifractal Spectrum through Wavelet Approach[J]. Geoderma, 2010, 155(3/4): 203-210.
[37]KRAMERS G, RICHARDS K G, HOLDEN N M. Assessing the Potential for the Occurrence and Character of Preferential Flow in Three Irish Grassland Soils Using Image Analysis [J]. Geoderma, 2009, 153(3/4): 362-371.
[38]BAER J U, KENT T F, ANDERSON S H. Image Analysis and Fractal Geometry to Characterize Soil Desiccation Cracks[J]. Geoderma, 2009, 154(1/2): 153-163.
[39]SANDER T, GERKE H H. Preferential Flow Patterns in Paddy Fields Using a Dye Tracer[J]. Vadose Zone Journal, 2007, 6(1): 105.
[40]KOSZINSKI S, QUISENBERRY V, ROGASIK H, et al. Spatial Variation of Tracer Distribution in a Structured Clay Field Soil[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(1): 25-37.
[41]SCHLATHER M, HUWE B. A Risk Index for Characterising Flow Pattern in Soils Using Dye Tracer Distributions[J]. Journal of Contaminant Hydrology, 2005, 79(1/2): 25-44.
[42]KASTEEL R, BURKHARDT M, GIESA S, et al. Characterization of Field Tracer Transport Using High-Resolution Images[J]. Vadose Zone Journal, 2004, 4: 101-111.
[43]LUO L, LIN H. Lacunarity and Fractal Analyses of Soil Macropores and Preferential Transport Using Micro-X-Ray Computed Tomography[J]. Vadose Zone Journal, 2009, 8(1): 233.
[44]BAVEYE P C, LABA M, OTTEN W, et al. Observer-dependent Variability of the Thresholding Step in the Quantitative Analysis of Soil Images and X-ray Microtomography Data[J]. Geoderma, 2010, 157(1/2): 51-63.
[45]HAARDER E B, LOOMS M C, JENSEN K H, et al. Visualizing Unsaturated Flow Phenomena Using High-Resolution Reflection Ground Penetrating Radar[J]. Vadose Zone Journal, 2011, 10(1): 84-97.
[46]区自清, 贾良清, 金海燕, 等. 大孔隙和优先水流及其对污染物在土壤中迁移行为的影响[J]. 土壤学报, 1999, 36(3): 341-347. (QU Zi-qing, JIA Liang-qing, JIN Hai-yan, et al. Macropores and Preferential Flow and Their Effects on Pollutant Migration in Soils [J]. Acta Pedologica Sinica, 1999, 36(3): 341-347. (in Chinese))
[47]王焕之. 稻田土壤水分优先流的发生、发展与模拟研究[D]. 杭州:浙江大学,2002. (WANG Huan-zi. The Generation, Development and Modeling of Preferential flow in Paddy Field[D]. Hangzhou: Zhejiang University, 2002. (in Chinese))
[48]郭会荣. 优先流影响下的入渗补给过程及溶质运移实验与模拟[D]. 武汉:中国地质大学,2008. (GUO Hui-rong. Experimental Study and Numerical Simulation of Groundwater Charge Processes and Preferential Solute Transport in Soils [D]. Wuhan: China University of Geosciences, 2008. (in Chinese))
[49]齐登红, 靳孟贵, 刘延锋. 降水入渗补给过程中优先流的确定[J]. 地球科学-中国地质大学学报, 2007, 32(3): 421-424. (QI Deng-hong, JIN Meng-gui, LIU Yan-fen. Determination of Preferential Flow in Precipitation Infiltration Recharge[J]. Earth Science: Journal of China University of Geoscience, 2007, 32(3): 421-424. (in Chinese))
[50]盛 丰, 张仁铎, 刘会海. 土壤优先流运动的活动流场模型模拟和敏感性分析[J]. 农业工程学报, 2011, 27(4): 72-80. (SHENG Feng, ZHANG Ren-duo, LIU Hui-hai. Modeling Preferential Flow in Unsaturated Soil Using Active Region Model and Its Sensitivity Analysis[J]. Transactions of the CSAE, 2011, 27(4): 72-80. (in Chinese))
[51]郭会荣, 靳梦贵, 王 云. 基于室内土柱穿透实验的优先流定量评价[J]. 地质科技情报, 2009, 28(6): 101-106. (GUO Hui-rong, JIN Meng-gui, WANG Yun. Quantitative Evaluation of Preferential Flow Based on Laboratory Breakthrough Experiments of Soil Columns[J]. Geological Science and Technology Information, 2009, 28(6): 101-106. (in Chinese))
[52]张丽华, 王成武. 非饱和土壤优先流运动特性的染色示踪研究[J]. 节水灌溉, 2010,(5): 35-37. (ZHANG Li-hua, WANG Cheng-wu. Using Dye Tracer to Characterize Preferential Flow Movement on Soil Surface[J]. Water Saving Irrigation, 2010,(5): 35-37. (in Chinese))
[53]LEIJ F J, TORIDE N, FIELD M S, et al. Solute Transport in Dual-permeability Porous Media[J]. Water Resources Research, 2012, 48(4): 1-13.
[54]ARORA B, MOHANTY B P, MCGUIRE J T. Uncertainty in Dual Permeability Model Parameters for Structured Soils[J]. Water Resources Research, 2012, 48(1): 1-17.
[55]TAYLOR P, ALAOUI A, GERMANN P, et al. Dual-porosity and Kinematic Wave Approaches to Assess the Degree of Preferential Flow in an Unsaturated Soil[J]. Hydrological Sciences Journal, 2003, 48(3): 37-41.
[56]DOLEAL F, ZUMR D, VACEK J, et al. Dual Permeability Soil Water Dynamics and Water Uptake by Roots in Irrigated Potato Fields[J]. Frantiek, Doleal, 2007, 62(5): 552-556.
[57]马东豪, 王全九. 土壤溶质迁移的两区模型与两流区模型对比分析[J]. 水力学报, 2004, (6): 1-8. (MA Dong-hao, WANG Quan-jiu. Analysis of Two Region Model and Two Flow Domain Model for Soil Solute Transport[J]. Shuili Xuebao, 2004, (6): 1-8. (in Chinese))
[58]GATES J B, EDMUNDS W M, MA J, et al. Estimating Groundwater Recharge in A Cold Desert Environment in Northern China Using Chloride[J]. Hydrogeology Journal, 2008, 16(5): 893-910.
[59]HUANG T, PANG Z. Estimating Groundwater Recharge Following Land-use Change Using Chloride Mass Balance of Soil Profiles: A Case Study at Guyuan and Xifeng in the Loess Plateau of China[J]. Hydrogeology Journal, 2010, 19(1): 177-186.
[60]LO S, ZAVATTARO L, ACUTIS M, et al. Chloride Profile Technique to Estimate Water Movement through Unsaturated Zone in a Cropped Area in Subhumid Climate ( Po Valley-NW Italy )[J]. Journal of Hydrology, 2003, 270: 65-74.
[61]SUBYANI A M. Use of Chloride-mass Balance and Environmental Isotopes for Evaluation of Groundwater Recharge in the Alluvial Aquifer, Wadi Tharad, Western Saudi Arabia[J]. Environmental Geology, 2004, 46: 741-749.
[62]SUBYANI A, SEN Z. Refined Chloride Mass-balance Method and Its Application[J]. Hydrological Processes, 2006, 20(20): 4373-4380.
[63]LI F, SONG X, TANG C, et al. Tracing Infiltration and Recharge Using Stable Isotope in Taihang Mt., North China[J]. Environmental Geology, 2007,53(3):687-696.
[64]ALCAL F J. Atmospheric Chloride Deposition in Continental Spain[J]. Hydrological Processes, 2008, (3): 3636- 3650.
[65]刘 君,陈宗宇,张兆吉,等. 利用环境示踪剂估算滹沱河冲洪积扇地下水天然补给[J]. 地质科技情报,2009,28(6):114-118. (LIU Jun, CHEN Zong-yu, ZHANG Zhao-ji, et al. Estimation for Natural Groundwater Recharge in the Hutuo River Alluvial-Proluvial Fan Using Environmental Tracers[J]. Geological Science and Technology Information, 2009, 28(6): 114-118.
[66]LIN R, WEI K. Tritium Profiles of Pore Water in the Chinese Loess Unsaturated Zone: Implications for Estimation of Groundwater Recharge [J]. Geography, 2006,328(1/2): 192-199.
[67]徐恒力, 陈植华. 确定干旱-半干旱地区降水入渗补给量的新方法——氯离子示踪法[J]. 中国地质科技情报, 2009, 15(3): 87-92. (XU Heng-li, CHEN Zhi-hua. Chloride Tracer Method for Estimation Natural Groundwater Recharge in Arid and Semiarid Regions[J]. Geological Science and Technology Information, 2009, 15(3): 87-92. (in Chinese))
[68]WANG B, JIN M, WANG W, et al. Estimating Groundwater Recharge in Hebei Plain, China under Varying Land Use Practices Using Tritium and Bromide Tracers[J]. Journal of Hydrology, 2008, 356: 209-222.
[69]KHNE S, LENNARTZ B, KHNE J M, et al. Bromide Transport at a Tile-drained Field Site: Experiment, and One- and Two-dimensional Equilibrium and Non-equilibrium Numerical Modeling[J]. Journal of Hydrology, 2006, 321(1/4): 390-408.
[70] 吴庆华,张 薇,蔺文静,等. 人工示踪方法评价地下水入渗补给及其优先流程度-以河北栾城和衡水为例[J]. 地球学报,2014,35(4):495-502.(WU Qing-hua, ZHANG Wei, LIN Wen-jing, et al. The Estimation of Groundwater Recharge and Preferential Flow Based on the Applied Tracers: A Case Study of Luancheng and Hengshui Areas in Hebei Province[J]. Acta Geoscientica Sinica, 2014, 35(4): 495-502.(in Chinese))
[71]HEALY R, COOK P. Using Groundwater Levels to Estimate Recharge[J]. Hydrogeology Journal, 2002, 10(1): 91-109.
[72]汪丙国. 地下水补给评价方法研究[D]. 武汉:中国地质大学,2008. (WANG Bing-guo. Research on Estimating Methods of Groundwater Recharge: A Case Study on North China Plain [D]. Wuhan: China University of Geoloscience, 2008. (in Chinese))
[73]KITCHING R, SHEARER T R, SHEDLOCK S L. Recharge to Bunter Sandstone Determined from Lysimeters[J]. Journal of Hydrology, 1977, 33: 217-232.
[74]雷志栋, 胡和平, 杨诗秀. 土壤水研究进展与评述[J]. 水科学进展, 1999, 10(3): 311-318. (LEI Zhi-dong, HU He-ping, YANG Shi-xiu. A Review of Soil Water Research[J]. Advances in Water Science, 1999, 10(3): 311-318. (in Chinese))
[75]吴庆华, 王贵玲, 蔺文静,等. 太行山山前平原地下水补给规律分析: 以河北栾城为例[J]. 地质科技情报, 2012, 31(2): 99-105. (WU Qing-hua, WANG Gui-ling, LIN Wen-jing, et al. Estimating Groundwater Recharge of Taihang Mountain Piedmont in Luancheng County, Hebei Province, China[J]. Geological Science and Technology Information, 2012, 31(2): 99-105. (in Chinese))
[76]张光辉. 潜水入渗补给量形成过程及其与某些易观测量之间关系研究 [R]. 石家庄: 地质矿产部水文地质工程地质研究所, 1991. (ZHANG Guang-hui. Forming Procession of Unconfined Aquifer Recharge and Relationship of Several Observed Variable Parameters [R]. Shijiazhuang: Institute of Hydrogeology and Environmental Geology, CAGS, 1991. (in Chinese))
[77]荆恩春, 费 瑾, 张孝和. 土壤水分通量法实验研究[M]. 北京: 地震出版社, 1994. (JING En-chun, FEI Jing, ZHANG Xiao-he. Experimental Study on Soil Water Flux [M]. Beijing: Earthquake Press, 1994. (in Chinese))
[78]吴庆华, 张 薇, 蔺文静, 等. 太行山前平原土壤水高效利用及精确灌溉制度研究[J]. 中国农村水利水电, 2010,(4): 58-61. (WU Qing-hua, ZHANG Wei, LIN Wen-jing, et al. A Study of Soil Water High Effective Utilization and Precise Irrigation System in the Piedmont of the Taihang Mountains [J]. China Rural Water and Hydropower, 2010,(4): 58-61. (in Chinese))
[79]IMUNEK J, BRADFORD S A. Vadose Zone Modeling: Introduction and Importance[J]. Vadose Zone Journal, 2008, 7(2): 581.
[80]LU X, JIN M, VAN GENUCHTEN M T, et al. Groundwater Recharge at Five Representative Sites in the Hebei Plain, China[J]. Groundwater, 2011, 49(2): 286-94.
[81]毕经伟,张佳宝,陈效民,等. 应用HYDRUS-1D模型模拟农田土壤水渗漏及硝态氮淋失特征[J]. 农村生态环境,2004,20(2):28-32.(BI Jing-wei, ZHANG Jia-bao, CHENG Xiao-min,et al. Simulation of Soil Water Leaching and Nitrate-N Loss with Leachate in the Field Using HYDRUS-1D Model[J]. Rural Eco-Environment, 2004, 20 (2) :28-32.(in Chinese))
[82]DASSI L. Use of Chloride Mass Balance and Tritium Data for Estimation of Groundwater Recharge and Renewal Rate in an Unconfined Aquifer from North Africa: A Case Study from Tunisia[J]. Environmental Earth Science, 2010, 60: 861-871.
[83]HORST A, MAHLKNECHT J, MERKEL B J, et al. Evaluation of the Recharge Processes and Impacts of Irrigation on Groundwater Using CFCs and Radiogenic Isotopes in the Silao-Romita Basin, Mexico[J]. Hydrogeology Journal, 2008, 16(8): 1601-1614.
[84]COES A, SPRUILL T B, THOMASSON M J. Multiple-method Estimation of Recharge Rates at Diverse Locations in the North Carolina Coastal Plain, USA[J]. Hydrogeology Journal, 2007, 15(4): 773-788.
[85]SCANLON B R, HEALY R W, COOK P G. Choosing Appropriate Techniques for Quantifying Groundwater Recharge[J]. Hydrogeology Journal, 2002, 10: 18-39.

基金

国家重点基础研究发展计划(2010CB428802);国家自然科学基金面上项目(51279016);国家“十二五”科技支撑计划(2011BAB10B04);中央级公益性科研院所基本科研业务费(CKSF201223/YT,CKSF2014058/YT)

PDF(1091 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map