裂纹尖端解析解与周边数值解联合求解应力强度因子

苏海东,祁勇峰,龚亚琦

raybet体育在线 院报 ›› 2013, Vol. 30 ›› Issue (6) : 83-89.

PDF(1218 KB)
PDF(1218 KB)
raybet体育在线 院报 ›› 2013, Vol. 30 ›› Issue (6) : 83-89. DOI: 10.3969/j.issn.1001-5485.2013.06.019
水工结构与材料

裂纹尖端解析解与周边数值解联合求解应力强度因子

  • 苏海东,祁勇峰,龚亚琦
作者信息 +

Compute Stress Intensity Factors via Combining Analytical Solutionsaround Crack Tips with Surrounding Numerical Solutions

  • SU Hai-dong, QI Yong-feng, GONG Ya-qi
Author information +
文章历史 +

摘要

由于裂纹尖端位移和应力分布的复杂性,采用常规数值方法(如有限元法)的插值方式不易获得快速收敛的应力强度因子计算值。基于数值流形方法,提出将裂纹尖端Williams解析解与其周边高阶多项式级数的数值解联合应用以求解应力强度因子的新方法:在裂纹尖端所在网格的结点上采用Williams位移解析级数,并用结点自由度强制约束方式得到裂纹尖端区域的解析级数;在与之相邻的周边网格内将解析级数与多项式级数用形函数连接;给出应变矩阵和刚度矩阵的具体表达式及积分方式;利用数值流形方法的网格与材料边界分离的特性以及不连续覆盖技术,使裂纹可以在网格内穿过,给材料边界(包括裂纹边界)附近的网格划分带来很大的方便;通过典型算例验证了方法的有效性。考虑到Williams级数是对裂纹尖端位移场的最佳逼近,这种新方法相比扩展有限元等其他新方法而言将有更快的收敛性。

Abstract

Due to the complex distribution of the displacements and stresses around the crack tip, it is not easy to obtain the Stress Intensity Factor (SIF) with a rapid convergence when using conventional interpolation approaches of numerical methods such as Finite Element Method (FEM). On the basis of Numerical Manifold Method (NMM), a novel method is presented to compute the SIFs via combining analytical solutions with numerical solutions. The Williams expansion is used as the analytical solution, which is formed by applying the constraints of nodal freedoms in the mesh containing the crack tip. High-order polynomial functions are used as the numerical solutions which are connected with the analytical solution via shape functions in the surrounding meshes. Meanwhile, the meshes in NMM need not conform to the physical boundaries including the crack edges, and discontinuous covers are used to allow the cracks arbitrarily align within the meshes, providing the convenience of mesh generation. Numerical example shows the validity of the method. Considering that the Williams expansion is the best approximation for the displacement field around the crack tip, the method has a more rapid convergence than other new methods such as extended Finite Element Method (XFEM).

关键词

应力强度因子 / 数值流形方法 / 裂纹尖端Williams解析解 / 解析解与数值解联合应用

Key words

stress intensity factor (SIF) / numerical manifold method (NMM) / Williams expansion for crack tip / combining analytical solutions with numerical solutions

引用本文

导出引用
苏海东,祁勇峰,龚亚琦. 裂纹尖端解析解与周边数值解联合求解应力强度因子[J]. raybet体育在线 院报. 2013, 30(6): 83-89 https://doi.org/10.3969/j.issn.1001-5485.2013.06.019
SU Hai-dong, QI Yong-feng, GONG Ya-qi. Compute Stress Intensity Factors via Combining Analytical Solutionsaround Crack Tips with Surrounding Numerical Solutions[J]. Journal of Changjiang River Scientific Research Institute. 2013, 30(6): 83-89 https://doi.org/10.3969/j.issn.1001-5485.2013.06.019
中图分类号: TV313   

参考文献

[1]范天佑.断裂理论基础[M].北京;科学出版社,2003.(FAN Tian-you. Basic Principle of Fracture [M]. Beijing; Science Press,2003.(in Chinese)
[2] 数值流形方法与非连续变形分析[M].石根华,裴觉民,译.北京;清华大学出版社,1997.(SHI Gen-hua. Numerical Manifold Method (NMM) and Discontinuous Deformation Analysis (DDA) [M]. Translated by PEI Jue-min. Beijing; Tsinghua University Press,1997.(in Chinese)
[3] 李录贤,王铁军. 扩展有限元法(XFEM)及其应用[J]. 力学进展,2005,35(1);5-20.(LI Lu-xian,WANG Tie-jun. The Extended Finite Element Method and Its Applications-A Review [J]. Advances in Mechanics,2005,35(1);5-20.(in Chinese)
[4] 李树忱,程玉民. 考虑裂纹尖端场的数值流形方法[J]. 土木工程学报,2005,38(7);96-101.(LI Shu-chen,CHENG Yu-min. Numerical Manifold Method for Crack Tip Fields[J]. China Civil Engineering Journal,2005,38(7); 96-101.(in Chinese)
[5] WILLIAMS M L. On the Stress Distribution at the Base of a Stationary Crack[J]. Journal of Applied Mechanics,1957,24; 109-114.
[6] KARIHALOO B L,XIAO Q Z. Implementation of HCE on a General FE Mesh for Interacting Multiple Cracks[C]∥Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering,ECCOMAS,Jyv skyl ; July 24-28,2004.
[7] 彭 俚. 结构断裂分析的Williams广义参数单元[D]. 南宁;广西大学,2008.(PENG Li. Williams Element with Generalized DOF for Structural Fracture Analysis[D]. Nanning; Guangxi University,2008.(in Chinese)
[8] 苏海东,黄玉盈.数值流形方法在流固耦合谐振分析中的应用[J].计算力学学报,2007,24(6);823-828.(SU Hai-dong,HUANG Yu-ying. Application of Numerical Manifold Method in Fluid-Solid Interaction Harmonic Analysis[J]. Chinese Journal of Computational Mechanics,2007,24(6); 823-828.(in Chinese)
[9] 王勖成,邵 敏.有限单元法的基本概念和数值方法[M].北京;清华大学出版社,1988.(WANG Xu-cheng,SHAO Min. Basic Principle of the FEM and Numerical Method[M]. Beijing; Tsinghua University Press,1988.(in Chinese)
[10]中国航空研究院.应力强度因子手册[M]. 北京;科学出版社,1993.(Chinese Institute of Aviation Research. Manual of Stress Intensity Factors[M]. Beijing; Science Press,1993.(in Chinese)

基金

中央级公益性科研院所基本科研业务费项目(CKSF0210012)


PDF(1218 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map