考虑波的多次反射,采用频域分析方法研究一维波在层状节理岩体中的传播问题。首先基于波动理论、线性位移不连续模型在频域内建立一维波沿多条平行节理传播的总体传递矩阵,结合边界条件解得层状节理岩体中一维波传播的频域解,然后采用离散傅里叶变换和反变换将频域解过渡到时域解,最后运用上述方法研究了SV波在不同间距、不同条数节理组处的传播,并与离散元程序UDEC模拟结果进行对比。结果表明:随节理间距增大,位移透射系数|TN|(透射波与入射波振幅比值)的变化趋势呈现上升、下降、平稳3个阶段;在透射系数|TN|呈上升阶段的节理区间内,透射系数|TN|对节理条数依耐性很小;通过与UDEC计算结果对比表明本文求解方法是可行的。
Abstract
In consideration of multiple wave reflections, frequency domain analysis method was adopted to solve one-dimensional wave propagation in layered jointed rock. Firstly, the overall transfer matrix of one-dimensional wave propagation along multiple parallel joints was constructed by using wave theory and linear displacement discontinuity model. Solution for one-dimensional wave propagation in frequency domain can be obtained with boundary conditions. Subsequently, discrete Fourier transform and inverse discrete Fourier transform were used to transform the solution from frequency domain to time domain. Finally, SV wave propagation through joints of different spaces and numbers was studied by the above methods, and the simulation result was compared with that from discrete element program UDEC. The results showed that the transmission coefficient |TN| (ratio of transmitted wave amplitude to incident wave amplitude) rose first, then declined, and finally became stable with the increasing of joint spacing. During the rising stage of TN, it has less dependence on the number of joints. Through comparison with UDEC results, the method in this paper was found to be feasible.
关键词
多条节理 /
应力波 /
离散傅里叶变换 /
频域 /
线性位移不连续模型
Key words
multiple joints /
stress wave /
discrete Fourier transform /
frequency domain /
discontinuity model of linear displacement
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MILLER R K. Effects of Boundary Friction on Propagation of Elastic-Waves[J]. Bulletin of the Seismological Society of America, 1978, 68(4): 987-998.
[2] SCHOENBERG M. Elastic Wave Behavior Across Linear Slip Interfaces[J]. Journal of the Acoustical Society of America, 1980, 68(5): 1516-1521.
[3] PYRAK L J. Seismic Visibility of Fractures[D]. California, US: University of California, Berkeley, 1988.
[4] PYRAK-NOLTE L J, MYER L R, COOK N G W. Transmission of Seismic Waves Across Single Natural Fractures[J]. Journal of Geophysical Research, 1990, 95(B6): 8617-8638.
[5] PYRAK-NOLTE L J, MYER L R, COOK N G W. Anisotropy in Seismic Velocities and Amplitudes From Multiple Parallel Fractures[J]. Journal of Geophysical Research, 1990, 95(B7): 11345-11358.
[6] 石 崇,徐卫亚,周家文,等. 节理面透射模型及其隔振性能研究[J]. 岩土力学, 2009, 30(3): 729-734.(SHI Chong, XU Wei-ya, ZHOU Jia-wen, et al. Transmission Model of Joint Interface and Its Performance of Vibration Isolation[J]. Rock and Soil Mechanics, 2009, 30(3): 729-734.(in Chinese))
[7] CAI J G, ZHAO J. Effects of Multiple Parallel Fractures on Apparent Attenuation of Stress Waves in Rock Masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 661-682.
[8] ZHAO J, ZHAO X B, CAI J G. A Further Study of P-Wave Attenuation across Parallel Fractures with Linear Deformational Behaviour[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43: 776-788.
[9] 赵 坚,蔡军刚,赵晓豹,等. 弹性纵波在具有非线性法向变形本构关系的节理处的传播特征[J]. 岩石力学与工程学报, 2003, 22(1): 9-17.(ZHAO Jian, CAI Jun-gang, ZHAO Xiao-bao, et al. Transmission of Elastic P-Waves across Single Fracture with Nonlinear Normal Deformation Behavior[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 9-17.(in Chinese))
[10]ZHAO J, ZHAO X B, HEFNY A M, et al. Normal Transmission of S-Wave across Parallel Fractures with Coulomb Slip Behavior[J]. Journal of Engineering Mechanics, 2006, 132(6): 641-650.
[11]SCHOENBERG M, MUIR F. A Calculus for Finely Layered Anisotropic Media[J]. Geophysics, 1989, 54(5): 581-589.
[12]HUDSON J A. Wave Speeds and Attenuation of Elastic Waves in Material Containing Cracks[J]. Geophysical Journal of the Royal Astronomical Society, 1981, 64(1):133-150.
[13]LI J C, MA G W, ZHAO J. An Equivalent Viscoelastic Model for Rock Mass with Parallel Joints[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2010, 115(B3): B3305.
[14]李建春,李海波,MA G W,等. 节理岩体的一维动态等效连续介质模型的研究[J]. 岩石力学与工程学报, 2010, 29(2): 4063-4067.(LI Jian-chun, LI Hai-bo, MA G W, et al. An Equivalent 1D Dynamic Continuum Model for Rock Mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 4063-4067.(in Chinese))
[15]廖振鹏. 工程波动理论导论[M]. 北京:科学出版社, 2002.(LIAO Zhen-peng. Introduction to Theory of Engineering Waves[M]. Beijing: Science Press, 2002.(in Chinese))
基金
国家自然科学基金重大研究计划资助项目(90715042);国家自然科学基金项目(51009130);国家科技支撑计划课题子题(2006BAB04A06)