院报 ›› 2013, Vol. 30 ›› Issue (1): 21-25.DOI: 10.3969/j.issn.1001-5485.2013.01.004

• 工程安全与灾害防治 • 上一篇    下一篇

逐步回归算法在边坡安全监测中的运用

陈兰a,b,c,仲云飞a,b,c,吴邦彬a,b,c,许淼a,b,c   

  1. 河海大学 a.水文水资源与水利工程科学国家重点实验室;b. 水资源高效利用与工程安全国家工程研究中心;c.水利水电学院, 南京 210098
  • 收稿日期:2011-12-20 修回日期:2012-02-07 出版日期:2013-01-01 发布日期:2013-01-16
  • 作者简介:陈 兰(1988-),女,湖北天门人,硕士研究生,主要研究方向为大坝安全监控
  • 基金资助:

    国家自然科学基金资助项目(51079046, 50909041, 51139001);河海大学水文水资源与水利工程科学国家重点实验室专项基金(2009586012, 2009586912, 2010585212);中央高校基本科研业务费项目(2009B08514, 2010B20414, 2010B01414, 2010B14114);江苏省“333高层次人才培养工程”(2017-B08037);江苏省普通高校研究生科研创新计划(CX09B_163Z)

Application of Stepwise Regression Algorithm to Slope Safety Monitoring

CHEN Lan1,2,3, ZHONG Yun-fei1,2,3,WU Bang-bin1,2,3,XU Miao1,2,3   

  1. 1.State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing210098,China;2.National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098,China;3.College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098,China
  • Received:2011-12-20 Revised:2012-02-07 Online:2013-01-01 Published:2013-01-16

摘要:

考虑时效、降雨和温度对边坡变形的影响,深入分析了边坡变形的外在影响因素及各因子的表达形式,建立边坡变形统计回归模型,应用Matlab软件和逐步回归算法,实现边坡变形的回归分析与预测。东津水电站溢洪道左岸高边坡变形监测资料分析成果表明:边坡变形统计拟合值与实测值接近,复相关系数较大,剩余标准差较小。该模型能较好地反映边坡的变形规律和发展趋势,为分析边坡运行时的安全状态和预测变形趋势提供了指导思想,有较大的工程实用价值。

关键词:  边坡变形, 统计回归模型, 影响因子, 复相关系数, 剩余标准差

Abstract:

Considering the effect of time, rainfall and temperature on slope deformation, we analyzed the deformation factors and their expressions in depth. We also established a statistical regression model of slope deformation through Matlab software and stepwise regression algorithm to carry out regression analysis and prediction of slope deformation. Analysis on the deformation monitoring data of high slope on the left bank of spillway of Dongjin hydropower station showed that the statistical regression values of slope deformation were in good agreement with measured values, with large multiple correlation coefficients and small residual standard deviations. This model can well reflect the slope deformation and its trend, and it provides guidelines for analyzing the safety and predicting the deformation trend.      

Key words: slope deformation, statistical regression model, influencing factor, multiple correlation coefficient, residual standard deviation 

中图分类号: 

Baidu
map