院报 ›› 2012, Vol. 29 ›› Issue (9): 39-41.DOI: 10.3969/j.issn.1001-5485.2012.09.009

• 工程安全与灾害防治 • 上一篇    下一篇

基于联邦Kalman技术综合提取滑坡监测信息

孙波,李计钢,罗文强   

  1. 中国地质大学 数学与物理学院,武汉   430074
  • 收稿日期:2011-11-10 修回日期:2012-06-22 出版日期:2012-09-01 发布日期:2012-09-13
  • 通讯作者: 罗文强(1963-),男,湖北武汉人,硕士生导师,主要从事概率统计和地质灾害防治方面的研究工作
  • 作者简介:孙波(1987-),男,陕西西安人,硕士研究生,主要从事工程概率方面的研究工作
  • 基金资助:

    国家重点基础研究发展计划资助“973”计划(2011CB710605)

A Synthetic Extraction of Landslide Monitoring Information Based on Federated Kalman Filter Technology

SUN Bo, LI Ji-gang, LUO Wen-qiang   

  1. School of Mathematics and Physics, China University of Geosciences, Wuhan   430074, China
  • Received:2011-11-10 Revised:2012-06-22 Online:2012-09-01 Published:2012-09-13

摘要: 目前,对滑坡的监测往往是在滑坡体上布置多个监测点,为了充分利用所有的监测数据,提高滑坡预报预测的可靠性,提出采用无重置联邦Kalman滤波技术对滑坡的监测信息进行综合提取并给出一致性描述。该方法具有容错性高、计算量小等特点。实例分析表明:利用该方法对滑坡多传感器监测数据进行融合是可行的。

关键词: 联邦卡尔曼滤波, 信息提取, 滑坡, 监测数据

Abstract: Currently, the monitoring of landslides is often achieved by arranging multiple monitoring points on the landslide mass. To improve the reliability of landslide prediction making use of all the monitoring data, the technology of no-reset federated Kalman filter is proposed to synthetically extract the monitoring information, and meanwhile the consistent description of landslide is given. This method has such advantages as high fault tolerance and smaller computation. A simulation example shows that it is feasible and effective to apply this method to the fusion of landslide monitoring data of multiple sensors.

Key words: federated Kalman filter, information extraction, landslide, monitoring data

中图分类号: 

Baidu
map