PDF(1589 KB)
PDF(1589 KB)
PDF(1589 KB)
南水北调中线总干渠冰盖糙率观测分析
Observation and Analysis of Ice Cover Roughness in the South-to-North Water Diversion Middle Route Project
冰盖糙率是确定渠道冰期输水水位和流量关系的基础参数,一直是明渠冰工程研究的重点之一。鉴于当前大型混凝土渠道冰盖糙率研究成果相当匮乏,以南水北调中线总干渠石家庄以北唯一无输水建筑物的唐河节制闸—放水河节制闸渠段为研究区域,依据全线通水以来唯一生成全渠段封冻冰盖的2016年1—2月逐日水位和流量实测数据,采用伯努利能量方程和谢才-曼宁公式推求渠道糙率,定性定量分析封冻前后渠道糙率变化特征。结果表明:①研究渠段畅流期渠道糙率nb为0.016 7,封冻期冰盖综合糙率nc为0.014 6,冰盖下表面糙率ni为0.011 8。②由于水力磨蚀作用,封冻期冰盖糙率随时间呈波动减小的趋势。③渠道一旦生成封冻冰盖,输水能力大幅降低,仅占渠道设计流量的66.7%。该研究给出了大型混凝土渠道封冻冰盖糙率和输水能力降低的确切数值,以期为冰期输水调度和类似工程设计提供科学依据。
As a research focus for ice-involved open channel projects, the roughness of ice cover is a fundamental parameter for determining the relationship between water level and discharge in open channels during freezing period. Given the current lack of data on ice sheet roughness in large-scale concrete channels, we investigated the channel section between Tanghe sluice gate and Fangshui sluice gate of the Middle Route of the South-to-North Water Diversion Project in the north of Shijiazhuang as a case study. Utilizing daily measured data of water level and flow rate from January to February 2016, we employed the Bernoulli energy equation and the Xie Cai-Manning formula to estimate channel roughness and analyze the changes in roughness before and after freezing, both qualitatively and quantitatively. The results are as follows: 1) The roughness coefficient nb of the studied channel during free-flow period is 0.016 7. The average comprehensive roughness nc of the ice sheet during freezing period is 0.014 6, and the average surface roughness ni beneath the ice sheet is 0.011 8. 2) Due to hydraulic abrasion, the roughness of ice sheet decreases over time during freezing. 3) Once ice sheet is formed in the channel, the water delivery capacity significantly diminishes, achieving only 66.7% of the designed flow rate. These findings provide a scientific basis for optimizing water transportation scheduling and designing similar engineering projects during freezing period.
南水北调中线工程 / 冰盖糙率 / 渠道糙率 / 输水能力 / 水头损失
South-to-North Water Diversion Middle Route Project / ice cover roughness / channel roughness / water transfer capacity / head loss
| [1] |
段文刚, 郝泽嘉, 杨金波, 等. 南水北调中线工程2014—2022年冬季水温与冰盖观测分析[J]. 水利学报, 2023, 54(9): 1025-1037.
(
|
| [2] |
段文刚, 黄国兵, 杨金波, 等. 长距离调水明渠冬季输水冰情分析与安全调度[J]. 南水北调与水利科技, 2016, 14(6): 96-104.
(
|
| [3] |
美国陆军工程兵团. 河冰管控工程设计手册[M]. 汪易森, 杨开林, 张滨, 等,译. 北京: 中国水利水电出版社, 2013.
(The Army Corps of Engineers of the United States. Design Manual of River Ice Control Engineering[M]. Translated by
|
| [4] |
王军. 封冻河道下流速分布和阻力问题探讨[J]. 水科学进展, 2005, 16(1): 28-31.
(
|
| [5] |
杨开林. 河渠冰水力学、冰情观测与预报研究进展[J]. 水利学报, 2018, 49(1):81-91.
(
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
雷蕾. 南运河畅流期与冰期河道糙率计算及变化规律分析[J]. 地下水, 2017, 39(4):148-150.
(
|
| [12] |
茅泽育, 马吉明, 佘云童, 等. 封冻河道的阻力研究[J]. 水利学报, 2002, 33(5): 59-64.
(
|
| [13] |
张雨山, 王双银, 臧聪敏, 等. 基于原型观测的输水渠道糙率取值及变化分析[J]. 水利水电科技进展, 2021, 41(1): 24-29, 73.
(
|
| [14] |
郑和震, 马雄威, 雷晓辉, 等. 南水北调中线工程渠道糙率计算方法研究[J]. 南水北调与水利科技, 2018, 16(1): 158-163.
(
|
| [15] |
卢明龙, 段春青, 任亚鹏. 南水北调中线工程典型渠段水面线探析[C]//中国水利学会2019学术年会论文集第四分册. 北京: 中国水利水电出版社, 2019:160-165.
(
|
| [16] |
陈文学, 崔巍, 何胜男, 等. 输水系统糙率率定方法研究[J]. 水利水电技术, 2019, 50(8): 116-121.
(
|
| [17] |
杨开林. 明渠冰盖下流动的综合糙率[J]. 水利学报, 2014, 45(11): 1310-1317.
(
|
| [18] |
陈刚, 张玉蓉, 浦承松, 等. 冰封河道综合糙率计算方法比较与分析[J]. 水科学进展, 2018, 29(5):645-654.
(
|
| [19] |
陈刚, 张玉蓉, 周密, 等. 冰盖下矩形河道的综合糙率[J]. 水科学进展, 2016, 27(2): 290-298.
(
|
| [20] |
魏良琰, 黄继忠. 冰盖流阻力与综合Manning糙率[J]. 武汉大学学报(工学版), 2002, 35(4): 1-8.
(
|
| [21] |
|
| [22] |
|
| [23] |
马吉明, 史哲. 南水北调典型宽浅渠道糙率系数研究[J]. 水力发电学报, 2007, 26(5): 75-79.
(
|
| [24] |
张罗号. 明渠水流阻力研究现状分析[J]. 水利学报, 2012, 43(10): 1154-1162.
(
|
| [25] |
GB/T 50662—2011, 水工建筑物抗冰冻设计规范[S]. 北京: 中国计划出版社, 2012.
(GB/T 50662—2011, Code for Design of Hydraulic Structures Against Ice and Freezing Action[S]. Beijing: China Planning Press, 2012. (in Chinese))
|
| [26] |
段文刚, 郝泽嘉. 基于气温链的南水北调中线工程冬季气温等级评价[J]. raybet体育在线
院报, 2022, 39(9): 1-8.
寒冷区明渠冬季输水结冰是常见的自然现象。南水北调中线工程水面一旦形成冰盖其安全输水流量仅为设计流量的30%~50%,而气温是驱动冰盖形成的主要因子,如何科学评价冬季气温等级是冰期输水面临的关键问题之一。分析了沿线8座气象站1951—2021年冬季日平均气温和日最低气温数据,揭示了总干渠气温沿程和年际变化规律。基于拉格朗日质点跟踪法,结合沿线气温-水温-冰盖生成物理过程,提出了气温链概念并给出通用数学表达式。分别采用国标法、一月平均气温法和气温链法评价冬季气温等级,构建了71 a冬季气温位次。结果表明:①总干渠自南向北气温逐级下降速率为0.48 ℃/(100 km),保定站呈加速下降趋势,对冰盖生成贡献最大。②沿线冬季气温总体呈波动上升趋势,升温速率为0.37 ℃/(10 a),强暖冬出现在最近30 a,强冷冬出现在前30 a,气温的总体上升有利于减缓大范围冰盖生成。③对于冰盖生成预测,气温链法优于一月平均气温法,更优于国标法;不同时间尺度组合评价可获得更优的结果;全球持续变暖背景下,可采用一月平均气温法和北方2站6 d气温链法联合评价。④给出了北方2站6 d气温链法冬季等级的分界阈值,即强暖冬T<sub>C</sub>≥-4.0 ℃,弱暖冬-5.7 ℃≤T<sub>C</sub><-4.0 ℃,正常-7.4 ℃<T<sub>C</sub><-5.7 ℃,弱冷冬-9.1 ℃<T<sub>C</sub>≤-7.4 ℃,强冷冬T<sub>C</sub>≤-9.1 ℃,长系列均值为-6.5 ℃。研究成果可更好地为南水北调中线工程总干渠冰盖生成提供新的参考基准。
(
The freezing of water-conveying open channel in winter is a common natural phenomenon in cold regions. Once ice carapace appears in the middle route of the South-to-North Water Transfer Project, the safe flow reduces to only 30%-50% of the design flow. As temperature is the main factor driving the formation of ice carapace, the evaluation of air temperature level in winter became a key problem for water conveyance in freezing period. The interannual variations of air temperature along the main canal is revealed according to the daily average temperature and daily minimum temperature data of eight meteorological stations along the line of the Project in winter from 1951 to 2021. A concept of air temperature chain is proposed and the general mathematical expression is given based on the Lagrange particle tracking method in line with the physical process of air temperature affecting water temperature and then further producing ice carapace along the line. The National Standard Method, January’s Average Temperature Method, and the proposed Air Temperature Chain Method are used to evaluate the winter temperature level and construct the temperature order in 71 years. Results manifest that: 1) The air temperature along the main canal decreased gradually from south to north at a rate of 0.48 ℃/(100 km), and in particular, Baoding station displayed an accelerated downward trend, which made the greatest contribution to the formation of ice carapace. 2) The temperature in winter was fluctuating upwardly in general at a rate of 0.37 ℃/10 a. Severe warm winter appeared in the recent three decades and severe cold winter in the first three decades. The rising of air temperature is conducive to alleviating the formation of large-scale ice carappace. 3) The proposed Air Temperature Chain Method is superior to the January’s Average Temperature Method and the National Standard Method in predicting the formation of ice carapace. Better prediction result can be achieved by combining different time scales. Under the background of continuous global warming, the joint evaluation by January’s Average Temperature Method and Air Temperature Chain Method with 6-day data at two north stations can be adopted. 4) The thresholds of winter temperature grade obtained by the Air Temperature Chain Method with 6-day data at two north stations are given as follows. Strong warm winter: <i>T</i><sub>C</sub>≥-4.0 ℃; weak warm winter: -5.7 ℃≤<i>T</i><sub>C</sub><-4.0 ℃; normal winter: -7.4 ℃<<i>T</i><sub>C</sub><-5.7 ℃; weak cold winter: -9.1 ℃<<i>T</i><sub>C</sub>≤-7.4 ℃; strong cold winter: <i>T</i><sub>C</sub>≤-9.1 ℃. The average value of long series <i>T</i><sub>C</sub> is -6.5 ℃. The research finding is expected to offer a new reference for predicting the formation of ice carapace in the main canal.
|
| [27] |
|
/
| 〈 |
|
〉 |