PDF(7239 KB)
PDF(7239 KB)
PDF(7239 KB)
考虑止水结构弹性的大型弧形闸门振动分析
Vibration Analysis of Large Scale Radial Gate Considering the Elasticity of Water Stop Structures
为给某大型水电站的安全监测提供参考,使用有限元计算软件ANSYS对其坝体表孔弧形闸门进行了振动特性分析,主要考察了止水结构弹性对该闸门振动模态及自振频率的影响。分析表明:止水结构弹性对闸门的振动特性具有一定程度的影响,与不考虑止水结构弹性的计算结果相比,部分与闸门两侧约束条件关系较大的振型所对应的频率数值可能相差46.80%;在一定范围内,表征止水结构弹性的基础刚度系数越小,同种振型对应的振动频率越低;基础刚度系数取0.1~0.2 N/mm3时可以得到与原型观测的振动响应主频相符合的结果。研究提出了表征闸门止水结构弹性的方法,为相关系数的选取准则积累了基础数据,可为该水电站安全监测和其它工程闸门的振动分析提供一定参考。
To offer a reference for the safety monitoring of a large-scale hydropower station, we conducted a vibration characteristics analysis of surface radial gate of the dam using finite element calculation software ANSYS. We primarily investigated how the elasticity of water stop structures affects the vibration modes and natural frequency of the gate. The analysis reveals that the elasticity of water stop structures has a certain degree of influence on the gate’s vibration characteristics. Compared with the calculation results neglecting the elasticity of water stop structures, the frequencies of some vibration modes closely related to the constraint conditions on both sides of the gate can differ by up to 46.80%. Within a certain range, as the foundation stiffness coefficient which characterizes the elasticity of water stop structures decreases, the vibration frequency of the same vibration mode declines. When the foundation stiffness coefficient ranges from 0.1 to 0.2 N/mm3, the simulation results align with the observed prototype gate’s vibration response. Additionally, we also proposed a method to quantify the elasticity of water stop structures, providing basic data for selecting correlation coefficient values, and potentially offering a reference for the safety monitoring of the studied hydropower station and the vibration analysis of gates in other projects.
radial gate / water stop structure / vibration characteristics / numerical simulation
| [1] |
马斌, 郭乙良. 水工闸门振动研究现状及发展趋势[J]. 水利水运工程学报, 2019(2): 55-64.
(
|
| [2] |
|
| [3] |
张怀仁, 古小七, 洪伟, 等. 某水库潜孔弧形闸门失稳事故分析[J]. 水利技术监督, 2021, 29(2): 129-133.
(
|
| [4] |
张兵, 孔垂雨, 张怀仁, 等. 某水库大坝底孔弧形工作闸门事故过程推理及事故原因分析[J]. 水利技术监督, 2023, 31(4): 213-215.
(
|
| [5] |
张文远, 张东, 章晋雄, 等. 小浪底水库孔板洞弧形工作闸门流激振动原型观测研究[J]. 水利水电技术, 2015, 46(3): 101-104.
(
|
| [6] |
曲直, 刘亚莲. 丰满重建工程泄洪兼导流洞弧门流激振动原型观测成果研究[J]. 大坝与安全, 2017(5):58-63,67.
(
|
| [7] |
连子怡. 三支臂弧形钢闸门静动力特性研究[D]. 武汉: 武汉大学, 2017.
(
|
| [8] |
胡玮, 冯晓波, 朱锐, 等. 南水北调中线某节制闸弧形门小开度振动观测与安全评价[J]. 南水北调与水利科技, 2018, 16(5):139-143,151.
(
|
| [9] |
党珍珍. 弧形闸门支臂结构空间参数共振机制研究[D]. 上海: 同济大学, 2020.
(
|
| [10] |
兰佳欣. 压杆布置对弧形闸门的静动力特性影响分析[D]. 哈尔滨: 东北农业大学, 2020.
(
|
| [11] |
蒲楠楠, 柯亚唯. 原型观测试验在泄洪闸门振动特性分析中的应用[J]. 水利与建筑工程学报, 2022, 20(3):46-52.
(
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
郑圣义, 朱文博, 姚辉, 等. 支臂纵向连接系形式对弧形闸门的稳定性分析[J]. 人民长江, 2019, 50(3):192-197.
(
|
| [16] |
赵兰浩, 郑拓, 杨校礼. 大型弧形钢闸门流激振动数值计算[J]. 水利水电技术, 2020, 51(6): 58-64.
(
|
| [17] |
顾功开, 徐栋栋, 李德. 乌东德水电站水工闸门动力安全评价[J]. 人民长江, 2020, 51(3):136-142.
(
|
| [18] |
刘昉, 吴敏睿, 李文胜, 等. 弱爬振现象对平板闸门振动的影响研究[J]. 水力发电学报, 2021, 40(2): 149-157.
(
|
| [19] |
徐强, 姜胜先, 胡友安, 等. 下卧式弧形闸门启闭力计算及自振特性研究[J]. 中国港湾建设, 2021, 41(8): 11-15.
(
|
| [20] |
张中昊, 兰佳欣, 汪可欣. 布置压杆的弧形钢闸门静动力特性分析[J]. 工程力学, 2021, 38(增刊1):144-150.
(
|
| [21] |
谢涛, 覃志强, 李云峰, 等. 基于有限元法的露顶式弧形闸门动力特性研究[J]. 水力发电, 2021, 47(1): 103-106.
(
|
| [22] |
王延召, 徐国宾, 刘昉. 事故闸门爬行振动数值反演与影响因素分析[J]. 水力发电学报, 2022, 41(2):55-62.
(
|
| [23] |
许中武, 蔡伟, 金晓华, 等. 不同类型闸门模态特性对比分析[J]. 中国港湾建设, 2022, 42(3):28-32.
(
|
| [24] |
胡耀楹, 陈保家, 陈法法, 等. 在役大型水工弧形闸门结构静强度与模态分析[J]. 水电能源科学, 2023, 41(1):181-185.
(
|
| [25] |
张亮, 徐强, 严根华, 等. 大型液压启闭下卧式弧形闸门流激振动及抗振优化研究[J]. 水利与建筑工程学报, 2023, 21(2):13-19,67.
(
|
| [26] |
王晋美, 张慧桢, 晋翔宇, 等. 考虑结构耦合弧形闸门动力特性分析[J]. 信息记录材料, 2023, 24(1):241-245.
(
|
| [27] |
匡涛, 牛继业, 南海龙, 等. 弧形闸门斜支臂空间角度分析[J]. 水电能源科学, 2023, 41(1):186-189.
(
|
| [28] |
潘文祥, 杨敏, 陈林, 等. 考虑闸墩弹性效应的弧形闸门流激振动数模-物模联合预测与安全分析[J]. 南水北调与水利科技, 2014, 12(2): 41-45.
(
|
| [29] |
张雪才, 王正中, 李宝辉, 等. 弧形闸门闸坝一体化静动力分析及安全评价[J]. raybet体育在线
院报, 2017, 34(7):116-120,131.
针对弧形闸门安全评价中采用的闸门单体计算模型过于简化的问题,应用有限元软件ANSYS对比分析了惯用的闸门单体结构模型与考虑止水摩阻及支铰和牛腿间直接作用的闸坝一体化模型在全闭和瞬间开启2种工况下的静动力特性。以闸坝一体化模型为准,在静力分析方面,在全闭工况时单体模型下框架主横梁的最大位移及等效应力分别偏大108.5%和67.1%,支臂内力偏大52.8%,单体模型下框架极不经济;在瞬间开启工况时单体模型上框架主横梁的最大位移及等效应力偏差分别为-10.1%和-21.2%,支臂内力偏小8.1%,单体模型上框架极不安全。在动力分析方面,止水及流固耦合作用使闸坝一体化模型的弧门前10阶频率最大下降48%,远离了流激振动的主频区,利于弧门的动力稳定。结果表明:合理弧形闸门结构安全评价的模型应为校核水位瞬间开启工况下的闸坝一体化模型,采用此工况及模型才能确保结构分析的正确性,实现闸门结构安全性与经济性的统一。
(
In view of the excessive simplification of single gate calculation model in safety assessment of radial gate, we compared and analyzed the static and dynamic characteristics between conventional single gate model and gate-dam system model considering friction of seal and the direct action between hinge and bracket under fully closed condition and instantaneously opening condition. Gate-dam system model was taken as standard. In static analysis, the maximum displacement and equivalent stress of main beam of lower frame for single gate model under fully closed condition are 108.5% and 67.1% larger, respectively. And internal force of arm is 52.8% larger. As a result, the lower frame of single gate model is very uneconomical. The maximum displacement and equivalent stress of main beam of upper frame for single gate model under instantaneously opening condition are 10.1% and 21.2% smaller, respectively. And the internal force of arm is 8.1% smaller. Therefore the upper frame of single gate model is very insecure. Moreover in dynamic analysis, the first ten natural frequencies of gate-dam system decreases 48% maximally with peripheral sealing and fluid-structure interaction, dodging the dominant frequency region of vibration excited by flow. It is beneficial to the dynamic stability of radial gate. Results show that reasonable model for safety assessment of radial gate should be gate-dam system model at check water level under instantaneously opening condition, which could ensure the validity of structural analysis and coordinate between safety and economy of gate structure.
|
| [30] |
李桑军, 秦战生. 基于ANSYS的流固耦合弧形闸门振动特性研究[J]. 水力发电, 2018, 44(1): 64-67.
(
|
| [31] |
|
| [32] |
|
| [33] |
杨吉新, 张可, 党慧慧. 基于ANSYS的流固耦合动力分析方法[J]. 船海工程, 2008, 37(6): 86-89.
(
|
/
| 〈 |
|
〉 |