环向控制速率对砂岩力学特性影响的试验研究

何志磊

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (1) : 169-176.

PDF(2398 KB)
PDF(2398 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (1) : 169-176. DOI: 10.11988/ckyyb.20230863
岩土工程

环向控制速率对砂岩力学特性影响的试验研究

作者信息 +

Experimental Study on the Influence of Circumferential Control Rate on Mechanical Properties of Sandstone

Author information +
文章历史 +

摘要

为研究环向控制速率对砂岩力学特性的影响,利用MTS刚性试验机开展了不同环向控制速率下砂岩的单轴压缩变形试验,分析了环向控制速率对砂岩应力-应变曲线、特征应力、脆性特征和破坏模式的影响,探讨了不同环向控制速率作用下岩石破坏过程中能量演化规律。试验结果表明:环向控制速率对峰前的变形规律和峰值强度影响较小,但在峰后出现应力和应变同时减小的变化特征,并且随着环向控制速率的减小,峰后的应力-应变曲线出现应力反复下降、升高的现象,体积应变在峰后也表现出同样的变化规律;环向控制速率对岩石的脆性基本没有影响,但随着环向控制速率的减小,岩石破坏所需的时间急剧增大;与轴向控制的结果相比较,环向控制下岩石破坏以剪切为主,峰前的总的耗散能比轴向控制的要小,但在峰后随着控制速率的减小,岩石变形中的耗散能逐渐增多,减弱了峰后破坏的剧烈程度,使得峰后破坏变得可控,为获取完整的应力-应变曲线提供有利条件,而轴向控制作用下岩石破坏以轴向劈裂为主,峰后侧向应变急剧增大,破坏速度快且剧烈。研究成果可作为岩石速率效应问题的有效补充,也可为脆性岩石在环向控制下的变形规律研究提供一定参考。

Abstract

To investigate the influence of circumferential loading rates on the mechanical properties of sandstone, uniaxial compression tests were conducted on sandstone specimens at various circumferential control rates using an MTS rigid servo testing machine. The effects of circumferential control rate on stress-strain curves, failure modes, and energy evolution were analyzed. Results indicate that circumferential control rates have minimal impact on pre-peak deformation and peak strength, while reducing post-peak stress and strains. As circumferential control rate decreases, the post-peak axial stress-strain curves experience alternating stress decreases and increases. Post-peak volumetric strain exhibit the same trend. Although circumferential control rate does not significantly affect rock brittleness, the time required for rock failure increases sharply as the control rate decreases. Circumferential control yields predominantly shear failure, with lower total dissipated energy during pre-peak stage. As circumferential control rate decreases, dissipated energy gradually increases during post-peak stage, which weakens the post-peak failure and makes it controllable. On the contrary, under axial control mode, axial splitting is the dominant failure mode, with sharp increases in lateral strain post-peak and violent failure. These findings provide valuable insights for understanding the rock loading ratio effect and the brittle rock deformation characteristics under circumferential control conditions.

关键词

砂岩 / 脆性破坏 / Ⅱ类曲线 / 环向控制速率 / 耗散能

Key words

sandstone / brittle failure / class Ⅱ curve / circumferential control rate / dissipated energy

引用本文

导出引用
何志磊. 环向控制速率对砂岩力学特性影响的试验研究[J]. raybet体育在线 院报. 2025, 42(1): 169-176 https://doi.org/10.11988/ckyyb.20230863
HE Zhi-lei. Experimental Study on the Influence of Circumferential Control Rate on Mechanical Properties of Sandstone[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 169-176 https://doi.org/10.11988/ckyyb.20230863
中图分类号: TU452 (岩体力学性质及应力理论分析)   

参考文献

[1]
沈明荣, 陈建峰. 岩体力学[M]. 上海: 同济大学出版社, 2006.
(SHEN Ming-rong, CHEN Jian-feng. Rock Mechanics[M]. Shanghai: Tongji University Press, 2006. (in Chinese))
[2]
WAWERSIK W R, FAIRHURST C. A Study of Brittle Rock Fracture in Laboratory Compression Experiments[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1970, 7(5):561-575.
[3]
PAN P Z, FENG X T, HUDSON J A. Numerical Simulations of Class I and Class II Uniaxial Compression Curves Using an Elasto-plastic Cellular Automaton and a Linear Combination of Stress and Strain as the Control Method[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1109-1117.
[4]
陈绍杰, 郭惟嘉, 刘进晓, 等. 岩石Ⅱ类曲线形成机制的试验研究[J]. 煤炭学报, 2010, 35(增刊1): 54-58.
(CHEN Shao-jie, GUO Wei-jia, LIU Jin-xiao, et al. Experimental Study on the Formation Mechanism of Class II Curves in Rocks[J]. Journal of China Coal Society, 2010, 35(Supp.1): 54-58. (in Chinese))
[5]
FAIRHURST C E, HUDSON J A. Draft ISRM Suggested Method for the Complete Stress-strain Curve for Intact Rock in Uniaxial Compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3):281-289.
[6]
HUDSON J A, BROWN E T, FAIRHURST C. Optimizing the Control of Rock Failure in Servo-controlled Laboratory Tests[J]. Rock Mechanics, 1971, 3(4):217-224.
[7]
OKUBO S, NISHIMATSU Y, HE C. Loading Rate Dependence of Class II Rock Behaviour in Uniaxial and Triaxial Compression Tests—An Application of a Proposed New Control Method[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1990, 27(6): 559-562.
[8]
OKUBO S, NISHIMATSU Y. Uniaxial Compression Testing Using a Linear Combination of Stress and Strain as the Control Variable[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(5): 323-330.
[9]
张海龙, 许江, 大久保诚介, 等. 基于应力归还控制的岩石荷载速率依存性研究[J]. 岩石力学与工程学报, 2017, 36(1):93-106.
(ZHANG Hai-long, XU Jiang, OKUBO S, et al. Research on Loading-rate Dependence of Rocks by Stress-feedback Controlling Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 93-106. (in Chinese))
[10]
张海龙. 岩石荷载速率依存性及其广义应力松弛特性研究[D]. 重庆: 重庆大学, 2016.
(ZHANG Hai-long. Study on Rock Load Rate Dependence and Its Generalized Stress Relaxation Characteristics[D]. Chongqing: Chongqing University, 2016. (in Chinese))
[11]
WONG L N Y, MENG F, GUO T, et al. The Role of Load Control Modes in Determination of Mechanical Properties of Granite[J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 539-552.
[12]
李海琪, 冯子军. 不同加载方式及速率下石灰岩三轴力学特性研究[J]. 矿业研究与开发, 2020, 40(4): 52-56.
(LI Hai-qi, FENG Zi-jun. Study on Triaxial Mechanical Properties of Limestone under Different Loading Modes and Loading Rates[J]. Mining Research and Development, 2020, 40(4): 52-56. (in Chinese))
[13]
HOU P Y, CAI M, ZHANG X W, et al. Post-peak Stress-Strain Curves of Brittle Rocks Under Axial- and Lateral-Strain-Controlled Loadings[J]. Rock Mechanics and Rock Engineering 2021, 55(2): 855-884.
[14]
WANG H, DYSKIN A, PASTERNAK E, et al. Mixed Class I/Class II Post-peak Curves of Mortar Models of Rock Samples[J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103178.
[15]
苏承东, 李怀珍, 张盛, 等. 应变速率对大理岩力学特性影响的试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 943-950.
(SU Cheng-dong, LI Huai-zhen, ZHANG Sheng, et al. Experimental Study on the Influence of Strain Rate on Mechanical Properties of Marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 943-950. (in Chinese))
[16]
李彦伟, 姜耀东, 杨英明, 等. 煤单轴抗压强度特性的加载速率效应研究[J]. 采矿与安全工程学报, 2016, 33(4): 754-760.
(LI Yan-wei, JIANG Yao-dong, YANG Ying-ming, et al. Research on Loading Rate Effect of Uniaxial Compressive Strength of Coal[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 754-760. (in Chinese))
[17]
张连英, 张树娟, 茅献彪, 等. 加载速率对煤系泥岩脆-延性转变影响的试验研究[J]. 采矿与安全工程学报, 2018, 35(2):391-396,401.
(ZHANG Lian-ying, ZHANG Shu-juan, MAO Xian-biao, et al. Experimental Research of Influence of Loading Rate on Brittle-ductile Transition of Mudstone in Coal Rock Strata[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 391-396, 401. (in Chinese))
[18]
汪斌, 朱杰兵, 邬爱清. MTS815系统变形测试技术的若干改进[J]. raybet体育在线 院报, 2010, 27(12):94-98.
(WANG Bin, ZHU Jie-bing, WU Ai-qing. Some Improvements of Deformation Measurement Techniques on MTS815.04 System[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(12): 94-98. (in Chinese))
[19]
靳一鼎, 徐荣超, 李日运, 等. MTS试验机岩石压缩试验变形测量数据的选取方法研究[J]. 工程地质学报, 2022, 30(2): 293-300.
(JIN Yi-ding, XU Rong-chao, LI Ri-yun, et al. Study on Selection Method of Deformation Measurement Data of Rock Compression Test of MTS Testing Machine[J]. Journal of Engineering Geology, 2022, 30(2): 293-300. (in Chinese))
[20]
TARASOV B G, POTVIN Y. Absolute, Relative and Intrinsic Rock Brittleness at Compression[J]. Mining Technology, 2012, 121(4): 218-225.
[21]
李邵军, 匡智浩, 邱士利, 等. 岩石脆性评价方法研究进展及适应性探讨[J]. 工程地质学报, 2022, 30(1): 59-70.
(LI Shao-jun, KUANG Zhi-hao, QIU Shi-li, et al. Research Progress and Adaptability of Rock Brittleness Evaluation Method[J]. Journal of Engineering Geology, 2022, 30(1): 59-70. (in Chinese))
[22]
匡智浩, 李邵军, 杜灿勋, 等. 考虑应力变化速率的岩石脆性评价指标[J]. 岩土力学, 2022, 43(增刊1): 1-8.
(KUANG Zhi-hao, LI Shao-jun, DU Can-xun, et al. Evaluation Index of Rock Brittleness Considering Stress Change Rate[J]. Rock and Soil Mechanics, 2022,43(Supp.1): 1-8. (in Chinese))
[23]
李增, 马林建, 吴家文, 等. 中低应变率下砂岩动力特性试验研究[J]. 振动工程学报, 2020, 33(1): 120-127.
(LI Zeng, MA Lin-jian, WU Jia-wen, et al. Experimental Study on Dynamic Characteristics of Sandstone under Medium and Low Strain Rates[J]. Journal of Vibration Engineering, 2020, 33(1): 120-127. in Chinese))

基金

河南省高等学校重点科研项目(23A410001)
河南省自然科学基金青年项目(232300420318)

编辑: 占学军
PDF(2398 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map