灌木根系形态对土体强度影响的大型直剪试验研究

陈婧逸, 陈晓清, 宋东日, 吕明, 蒋豪

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (8) : 120-127.

PDF(5324 KB)
PDF(5324 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (8) : 120-127. DOI: 10.11988/ckyyb.20230573
岩土工程

灌木根系形态对土体强度影响的大型直剪试验研究

作者信息 +

Effect of Shrub Root Morphology on Root-Soil Complex Strength: A Study Based on Large-scale Direct Shear Test

Author information +
文章历史 +

摘要

根系形态显著影响根土复合体强度,然而现有研究局限于草本根系根土复合体和室内常规直剪试验。为探究多年生灌木根系形态及空间分布对固土效果的影响,采用大型直剪试验装置(直径400 mm),对原状根土复合体进行了剪切试验。试验中测量了根系形态参数(根面积比RAR、根长密度、根体积密度和根表面积密度)、根土复合体抗剪强度和剪胀特性,探讨了根系沿深度的分布特征、根土复合体剪胀性以及根系形态参数与根土复合体抗剪强度的相关关系。结果表明,根系加剧了根土复合体的剪胀;在4个根系形态参数中,剪切带上的RAR和根表面积密度与根系对剪切强度的贡献之间相关性较好;Wu模型能反映根系固土的本质,却存在强度被高估或低估的问题。研究成果有助于推动植物根系在固土领域的应用。

Abstract

The strength of root-soil complex is significantly influenced by the morphology and spatial distribution of the root system. However, current studies have been limited to shear tests of root-soil complexes containing herbaceous roots and conventional indoor direct-shear tests. To investigate the impacts of root morphology and spatial distribution of perennial shrubs on root reinforcement, shearing experiments were conducted on in situ root-soil complex using a large-scale direct-shear apparatus (diameter 400 mm). The root morphological parameters (root area ratio RAR, root length density, root bulk density, and root surface area density), dilatancy and shear strength of the root-soil complex were measured. The distribution characteristics of root system along soil depth, the dilatancy of root-soil complex, and the correlation between root morphological parameters and shear strength were examined. Findings indicate that the root system exacerbates the dilatancy of the root-soil complex. Among the four evaluated root morphological parameters, RAR and root surface area density contribute the most to the shear strength. While Wu’s model effectively reflects the enhancement effect of root system on soil strength, it occasionally overestimates or underestimates the strength. The findings in the present research is conducive to promoting the application of root system in soil reinforcement.

关键词

灌木根系形态 / 根土复合体 / 抗剪强度 / 剪胀 / 大型直剪

Key words

shrub root morphology / root-soil complex / shear strength / dilatancy / large-scale direct-shear test

引用本文

导出引用
陈婧逸, 陈晓清, 宋东日, . 灌木根系形态对土体强度影响的大型直剪试验研究[J]. raybet体育在线 院报. 2024, 41(8): 120-127 https://doi.org/10.11988/ckyyb.20230573
CHEN Jing-yi, CHEN Xiao-qing, SONG Dong-ri, et al. Effect of Shrub Root Morphology on Root-Soil Complex Strength: A Study Based on Large-scale Direct Shear Test[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(8): 120-127 https://doi.org/10.11988/ckyyb.20230573
中图分类号: TU411.7 (土的抗剪强度试验)   

参考文献

[1]
陈丽华, 余新晓, 宋维峰, 等. 林木根系固土力学机制[M]. 北京: 科学出版社, 2008.
(CHEN Li-hua, YU Xin-xiao, SONG Wei-feng, et al. Mechanics of Root-soil[M]. Beijing: Science Press, 2008. (in Chinese))
[2]
徐华, 袁海莉, 王歆宇, 等. 根系形态和层次结构对根土复合体力学特性影响研究[J]. 岩土工程学报, 2022, 44(5): 926-935.
(XU Hua, YUAN Hai-li, WANG Xin-yu, et al. Influences of Morphology and Hierarchy of Roots on Mechanical Characteristics of Rootsoil Composites[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 926-935. (in Chinese))
[3]
周成, 路永珍, 黄月华. 香根草加固不同含水率膨胀土的侧限膨胀和直剪试验[J]. 岩土工程学报, 2016, 38(增刊2):30-35.
(ZHOU Cheng, LU Yong-zhen, HUANG Yue-hua. Confined Expansion and Direct Shear Test of Vetiver Grass Strengthening Expansive Soil with Different Water Content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Supp.2): 30-35. (in Chinese))
[4]
VEYLON G, GHESTEM M, STOKES A, et al. Quantification of Mechanical and Hydric Components of Soil Reinforcement by Plant Roots[J]. Canadian Geotechnical Journal, 2015, 52(11): 1839-1849.
[5]
YILDIZ A, GRAF F, RICKLI C, et al. Determination of the Shearing Behaviour of Rootpermeated Soils with a Largescale Direct Shear Apparatus[J]. CATENA, 2018, 166: 98-113.
[6]
孔纲强, 文磊, 刘汉龙, 等. 植物根系分布形态及含根复合土强度特性试验[J]. 岩土力学, 2019, 40(10):3717-3723.
(KONG Gang-qiang, WEN Lei, LIU Han-long, et al. Strength Properties of Root Compound Soil and Morphological Observation of Plant Root[J]. Rock and Soil Mechanics, 2019, 40(10):3717-3723. (in Chinese))
[7]
MAO Z, YANG M, BOURRIER F, et al. Evaluation of Root Reinforcement Models Using Numerical Modelling Approaches[J]. Plant and Soil, 2014, 381(1): 249-270.
[8]
李珍玉, 欧阳淼, 肖宏彬, 等. 基于根系构型的调控提高植物边坡根系固土能力[J]. 岩土力学, 2021, 42(12): 3271-3280, 3290.
(LI Zhen-yu, OUYANG Miao, XIAO Hong-bin, et al. Improvement of Slope Soil Consolidation Capacity of Plant Root System Based on Regulation of Root Architecture[J]. Rock and Soil Mechanics, 2021, 42(12): 3271-3280, 3290. (in Chinese))
[9]
曾红艳, 吴美苏, 周成, 等. 根系与植筋带固土护坡的力学机理试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 151-156.
(ZENG Hong-yan, WU Mei-su, ZHOU Cheng, et al. Experimental Study on Mechanical Mechanism of Soil Stabilization and Slope Protection with Root System and Planting Bar Belt[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Supp.2): 151-156. (in Chinese))
[10]
BORDONI M, MEISINA C, VERCESI A, et al. Quantifying the Contribution of Grapevine Roots to Soil Mechanical Reinforcement in an Area Susceptible to Shallow Landslides[J]. Soil & Tillage Research, 2016, 163: 195-206.
[11]
WU T H, MCKINNELL W P, SWANSTON D N. Strength of Tree Roots and Landslides on Prince of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1): 19-33.
[12]
POLLEN N, SIMON A. Estimating the Mechanical Effects of Riparian Vegetation on Stream Bank Stability Using a Fiber Bundle Model[J]. Water Resources Research, 2005, 41(7): 07025.
[13]
嵇晓雷, 夏光辉, 张海亚. 紫穗槐根系形态与固土护坡效应研究[J]. 湖北林业科技, 2016, 45(1): 16-19.
(JI Xiao-lei, XIA Guang-hui, ZHANG Hai-ya. Effects of Amorpha Fruticosa Root System on Slope Soil and Water Conservation[J]. Hubei Forestry Science and Technology, 2016, 45(1): 16-19. (in Chinese))
[14]
徐少君, 曾波, 类淑桐, 等. 三峡库区几种耐水淹植物根系特征与土壤抗水蚀增强效应[J]. 土壤学报, 2011, 48(1): 160-167.
(XU Shao-jun, ZENG Bo, LEI Shu-tong, et al. Root Features of Several Flooding-tolerant Plants and Their Roles in Enhancing Anti-erodibility of the Soil in Three Gorges Reservoir Region[J]. Acta Pedologica Sinica, 2011, 48(1): 160-167. (in Chinese))
[15]
WANG X, HONG M M, HUANG Z, et al. Biomechanical Properties of Plant Root Systems and Their Ability to Stabilize Slopes in Geohazardprone Regions[J]. Soil and Tillage Research, 2019, 189: 148-157.
[16]
DOCKER B B, HUBBLE T C T. Quantifying Rootreinforcement of River Bank Soils by Four Australian Tree Species[J]. Geomorphology, 2008, 100(3/4): 401-418.
[17]
GHESTEM M, VEYLON G, BERNARD A, et al. Influence of Plant Root System Morphology and Architectural Traits on Soil Shear Resistance[J]. Plant and Soil, 2014, 377(1): 43-61.
[18]
FU J T, HU X S, BRIERLEY G, et al. The Influence of Plant Root System Architectural Properties Upon the Stability of Loess Hillslopes, Northeast Qinghai, China[J]. Journal of Mountain Science, 2016, 13(5): 785-801.
[19]
白潞翼, 刘静, 胡晶华, 等. 紫穗槐直根力学性质研究[J]. 干旱区研究, 2021, 38(4):1111-1119.
(BAI Lu-yi, LIU Jing, HU Jing-hua, et al. Deformation Characteristics of the Straight Roots of Amorpha Fruticosa[J]. Arid Zone Research, 2021, 38(4): 1111-1119. (in Chinese))
[20]
WU Z, LEUNG A K, BOLDRIN D, et al. Variability in Root Biomechanics of Chrysopogon Zizanioides for Soil Ecoengineering Solutions[J]. Science of the Total Environment, 2021, 776: 145943.
[21]
COMINO E, MARENGO P, ROLLI V. Root Reinforcement Effect of Different Grass Species: a Comparison between Experimental and Models Results[J]. Soil and Tillage Research, 2010, 110(1): 60-68.
[22]
DE BAETS S, POESEN J, REUBENS B, et al. Root Tensile Strength and Root Distribution of Typical Mediterranean Plant Species and Their Contribution to Soil Shear Strength[J]. Plant and Soil, 2008, 305(1): 207-226.
[23]
HSIEH C, HSIEH M W. Load Plate Rigidity and Scale Effects on the Frictional Behavior of Sand/Geomembrane Interfaces[J]. Geotextiles and Geomembranes, 2003, 21(1): 25-47.

基金

国家自然科学基金项目(41925030)

编辑: 占学军
PDF(5324 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map