低温来流对深水水库过饱和总溶解气体输移的影响

周哲成, 石浩洋, 郭辉, 王智欣, 李析男, 杨文俊, 金光球

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (9) : 35-43.

PDF(2906 KB)
PDF(2906 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (9) : 35-43. DOI: 10.11988/ckyyb.20230454
水环境与水生态

低温来流对深水水库过饱和总溶解气体输移的影响

作者信息 +

Influence of Low-temperature Inflow on the Transport of Supersaturated Total Dissolved Gas in Deep-Water Reservoir

Author information +
文章历史 +

摘要

梯级深水水库产生的水温分层现象可降低下游水库来流水温,导致泄洪水体总溶解气体(TDG)的过饱和程度随库区密度分层流的输移过程产生变化。以溪洛渡—向家坝区间为研究区域,基于原位观测和数值模拟相结合的研究手段,研究低温来流对深水水库过饱和TDG纵向和垂向输移过程的影响规律。研究表明:①来流水温降低2 ℃,TDG云团潜入位置提前36.4 km,峰值垂向位置下移55 m、垂向影响范围减少23%;②来流水温降低2 ℃,TDG饱和度110%以上云团输移至向家坝坝前阶段和后续阶段,包络面积衰减速率降幅分别为16%和44%;③从射流区到交换区过饱和TDG平均纵向迁移速度显著降低,降幅达92%;④来流水温降低2 ℃,向家坝表孔出流TDG饱和度峰值和均值的降低程度分别为机组出流的3.2倍和4倍;⑤水温降低对鱼类安全水深阈值的补偿效应可量化为0.20 m/℃。研究成果可为梯级深水水库汛期生态调度提供科学支撑。

Abstract

The stratification of water temperature in deep-water cascade reservoirs reduces the inflow temperature of downstream reservoir, altering the supersaturation degree of total dissolved gas (TDG) in flow discharges. With the Xiluodu-Xiangjiaba cascade reservoirs as a case study, we investigated the impact of lower-temperature inflow on the longitudinal and vertical transport processes of supersaturated TDG in deep-water reservoir via field observation in association with numerical simulation. Finds reveal that: 1) a 2 ℃ decrease in inflow temperature advances the submersion position of TDG cloud by 36.4 km, shifts the peak TDG saturation down by 55 m, and reduces its vertical influence range by 23%. 2) With a 2 ℃ decrease in inflow temperature, as the TDG cloud with a saturation over 110% transports to front of the Xiangjiaba dam, the decay rate of enveloped area decreases by 16%; in subsequent transport stage, the decay rate reduces by 44%. 3) The average longitudinal transport velocity of supersaturated TDG from the jet flow zone to the interflow zone plunges by 92%. (4) As inflow temperature reduces by 2 ℃, the peak and mean TDG saturation of the outflow from Xiangjiaba’s surface orifices reduce by 3.2 and 4 times that of the outflow from power generating set, respectively. (5) The compensation effect of temperature reduction on the safe water depth threshold for fish can be quantified as 0.20 m/ ℃. The findings provide scientific support for ecological dispatching of deep-water reservoirs during flood seasons.

关键词

TDG输移过程 / 数学模型 / 水库水温分层 / 总溶解气体(TDG) / 云团位置 / 水温补偿 / 生态调度 / 梯级深水水库

Key words

TDG transport process / mathematical model / reservoir water temperature stratification / total dissolved gas / cloud position / water temperature compensation / ecological dispatching / cascade deep-water reservoir

引用本文

导出引用
周哲成, 石浩洋, 郭辉, . 低温来流对深水水库过饱和总溶解气体输移的影响[J]. raybet体育在线 院报. 2024, 41(9): 35-43 https://doi.org/10.11988/ckyyb.20230454
ZHOU Zhe-cheng, SHI Hao-yang, GUO Hui, et al. Influence of Low-temperature Inflow on the Transport of Supersaturated Total Dissolved Gas in Deep-Water Reservoir[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 35-43 https://doi.org/10.11988/ckyyb.20230454
中图分类号: TV131.34   

参考文献

[1]
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14.
(SHU Yin-biao, ZHANG Li-ying, ZHANG Yun-zhou, et al. Carbon Peak and Carbon Neutrality Path for China’s Power Industry[J]. Strategic Study of CAE, 2021, 23(6): 1-14. (in Chinese))
[2]
麻泽龙, 程根伟. 河流梯级开发对生态环境影响的研究进展[J]. 水科学进展, 2006, 17(5): 748-753.
(MA Ze-long, CHENG Gen-wei. Progress in Research on Impacts of River Hydro-power Engineering on Eco-environment[J]. Advances in Water Science, 2006, 17(5): 748-753. (in Chinese))
[3]
MA Q, LI R, FENG J, et al. Cumulative Effects of Cascade Hydropower Stations on Total Dissolved Gas Supersaturation[J]. Environmental Science and Pollution Research, 2018, 25(14): 13536-13547.
[4]
WEITKAMP D E, KATZ M. A Review of Dissolved Gas Supersaturation Literature[J]. Transactions of the American Fisheries Society, 1980, 109(6): 659-702.
[5]
谭德彩, 倪朝辉, 郑永华, 等. 高坝导致的河流气体过饱和及其对鱼类的影响[J]. 淡水渔业, 2006, 36(3): 56-59.
(TAN De-cai, NI Zhao-hui, ZHENG Yong-hua, et al. Dissolved Gas Supersaturation Downstream of Dam and Its Effects on Fish[J]. Freshwater Fisheries, 2006, 36(3): 56-59. (in Chinese))
[6]
WEITKAMP D E, SULLIVAN R D, SWANT T, et al. Gas Bubble Disease in Resident Fish of the Lower Clark Fork River[J]. Transactions of the American Fisheries Society, 2003, 132(5): 865-876.
[7]
陈求稳, 张建云, 莫康乐, 等. 水电工程水生态环境效应评价方法与调控措施[J]. 水科学进展, 2020, 31(5): 793-810.
(CHEN Qiu-wen, ZHANG Jian-yun, MO Kang-le, et al. Effects of Hydropower Development on Aquatic Eco-environment and Adaptive Managements[J]. Advances in Water Science, 2020, 31(5): 793-810. (in Chinese))
[8]
李然, 李克锋, 冯镜洁, 等. 水坝泄水气体过饱和对鱼类影响及减缓技术研究综述[J]. 工程科学与技术, 2023, 55(4): 91-101.
(LI Ran, LI Ke-feng, FENG Jing-jie, et al. Review on the Effect of Dissolved Gas Supersaturation of Dam Spill on Fishes and Its Mitigation Measures[J]. Advanced Engineering Sciences, 2023, 55(4): 91-101. (in Chinese))
[9]
SHEN X, LIU S, LI R, et al. Experimental Study on the Impact of Temperature on the Dissipation Process of Supersaturated Total Dissolved Gas[J]. Journal of Environmental Sciences, 2014, 26(9): 1874-1878.
[10]
KAMAL R, ZHU D Z, LEAKE A, et al. Dissipation of Supersaturated Total Dissolved Gases in the Intermediate Mixing Zone of a Regulated River[J]. Journal of Environmental Engineering, 2019, 145(2): 04018135.
[11]
冯镜洁, 李然, 李克锋, 等. 高坝下游过饱和TDG释放过程研究[J]. 水力发电学报, 2010, 29(1): 7-12.
(FENG Jing-jie, LI Ran, LI Ke-feng, et al. Study on Release Process of Supersaturated Total Dissovled Gas Downstream of High Dam[J]. Journal of Hydroelectric Engineering, 2010, 29(1): 7-12. (in Chinese))
[12]
HUANG J, LI R, FENG J, et al. Relationship Investigation between the Dissipation Process of Supersaturated Total Dissolved Gas and Wind Effect[J]. Ecological Engineering, 2016, 95: 430-437.
[13]
FENG J, LI R, LIANG R, et al. Eco-environmentally Friendly Operational Regulation: an Effective Strategy to Diminish the TDG Supersaturation of Reservoirs[J]. Hydrology and Earth System Sciences, 2014, 18(3): 1213-1223.
[14]
MA Q, LI R, FENG J, et al. Ecological Regulation of Cascade Hydropower Stations to Reduce the Risk of Supersaturated Total Dissolved Gas to Fish[J]. Journal of Hydro-Environment Research, 2019, 27: 102-115.
[15]
靖争, 张爵宏, 曹慧群, 等. 水库水温研究进展及趋势[J]. raybet体育在线 院报, 2023, 40(2): 52-59, 66.
(JING Zheng, ZHANG Jue-hong, CAO Hui-qun, et al. Research Progress and Trend of Reservoir Water Temperature[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 52-59, 66. (in Chinese))
[16]
张小峰, 姚志坚, 陆俊卿. 分层水库异重流试验[J]. 武汉大学学报(工学版), 2011, 44(4): 409-413.
(ZHANG Xiao-feng, YAO Zhi-jian, LU Jun-qing. Experiments of Density Currents in Stratified Reservoir[J]. Engineering Journal of Wuhan University, 2011, 44(4): 409-413. (in Chinese))
[17]
YIGZAW W, LI H Y, FANG X, et al. A Multilayer Reservoir Thermal Stratification Module for Earth System Models[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(10): 3265-3283.
[18]
任实, 张小峰, 陆俊卿. 温度分层水库中间层流运动影响因素分析[J]. 哈尔滨工程大学学报, 2015, 36(5): 648-652.
(REN Shi, ZHANG Xiao-feng, LU Jun-qing. Influencing Factors of the Inflow in Temperature-stratified Reservoirs[J]. Journal of Harbin Engineering University, 2015, 36(5): 648-652. (in Chinese))
[19]
杜兰, 卢金龙, 李利, 等. 大型水利枢纽泄洪雾化原型观测研究[J]. raybet体育在线 院报, 2017, 34(8): 59-63.
(DU Lan, LU Jin-long, LI Li, et al. Prototype Observation on Flood Discharge Atomization of Large Hydraulic Project[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(8): 59-63. (in Chinese))
[20]
吴时强, 吴修锋, 周辉, 等. 底流消能方式水电站泄洪雾化模型试验研究[J]. 水科学进展, 2008, 19(1): 84-88.
(WU Shi-qiang, WU Xiu-feng, ZHOU Hui, et al. Model Experiment Study of Effect of Discharge Atomization for Energy Dissipation by Hydraulic Jump[J]. Advances in Water Science, 2008, 19(1): 84-88. (in Chinese))
[21]
孟宝, 张继飞, 叶华, 等. 长江上游珍稀特有鱼类国家级自然保护区鱼类产卵场功能现状分析及保护启示[J]. 长江流域资源与环境, 2019, 28(11): 2772-2785.
(MENG Bao, ZHANG Ji-fei, YE Hua, et al. Current Situation and Protection Enlightenment of the Function of Fishing Spawning Grounds in the National Nature Reserve for the Rare and Endemic Fishes, Upper Reaches of the Yangze River[J]. Resources and Environment in the Yangtze Basin, 2019, 28(11): 2772-2785. (in Chinese))
[22]
朱玲玲, 董先勇, 陈泽方. 金沙江下游梯级水库淤积及其对三峡水库影响研究[J]. raybet体育在线 院报, 2017, 34(3): 1-7.
(ZHU Ling-ling, DONG Xian-yong, CHEN Ze-fang. Sediment Deposition of Cascade Reservoirs in the Lower Jinsha River and Its Impact on Three Gorges Reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(3): 1-7. (in Chinese))
[23]
李婷, 唐磊, 王丽, 等. 水电开发对鱼类种群分布及生态类型变化的影响: 以溪洛渡至向家坝河段为例[J]. 生态学报, 2020, 40(4): 1473-1485.
(LI Ting, TANG Lei, WANG Li, et al. Distribution Characteristics and Ecological Types Changes in Fish Communities under Hydropower Development from Xiluodu to Xiangjiaba Reach[J]. Acta Ecologica Sinica, 2020, 40(4): 1473-1485. (in Chinese))
[24]
李雨, 邹珊, 张国学, 等. 溪洛渡水库分层取水调度对下游河段水温结构的影响分析[J]. 水文, 2021, 41(3): 101-108.
(LI Yu, ZOU Shan, ZHANG Guo-xue, et al. Analysis on the Influence of Layered Water Intake Operation on the Water Temperature Structure in the Lower Reaches of Xiluodu Reservoir[J]. Journal of China Hydrology, 2021, 41(3): 101-108. (in Chinese))
[25]
程帅, 左新宇, 黄蕙, 等. 溪洛渡、向家坝库区及坝下水温分布特性及成因分析[J]. 水利水电快报, 2019, 40(8): 35-39.
(CHENG Shuai, ZUO Xin-yu, HUANG Hui, et al. Distribution Characteristics and Causes of Water Temperature in Xiluodu and Xiangjiaba Reservoir Areas and under the Dam[J]. Express Water Resources & Hydropower Information, 2019, 40(8): 35-39. (in Chinese))
[26]
曾晨军, 莫康乐, 关铁生, 等. 水库泄水总溶解气体过饱和对鱼类的危害[J]. 水利水运工程学报, 2020(6): 32-41.
(ZENG Chen-jun, MO Kang-le, GUAN Tie-sheng, et al. Effect of Total Dissolved Gas Supersaturation on Fish in the Reservoir between Cascade Hydropower Stations[J]. Hydro-Science and Engineering, 2020(6): 32-41. (in Chinese))
[27]
谢奇珂, 刘昭伟, 陈永灿, 等. 溪洛渡水库水温日变化的测量与分析[J]. 水科学进展, 2018, 29(4): 523-536.
(XIE Qi-ke, LIU Zhao-wei, CHEN Yong-can, et al. Observation and Analysis of Diurnal Water Temperature Variation in Xiluodu Reservoir[J]. Advances in Water Science, 2018, 29(4): 523-536. (in Chinese))
[28]
龙良红, 徐慧, 鲍正风, 等. 溪洛渡水库水温时空特性研究[J]. 水力发电学报, 2018, 37(4): 79-89.
(LONG Liang-hong, XU Hui, BAO Zheng-feng, et al. Temporal and Spatial Characteristics of Water Temperature in Xiluodu Reservoir[J]. Journal of Hydroelectric Engineering, 2018, 37(4): 79-89. (in Chinese))
[29]
WAN H, TAN Q, LI R, et al. Incorporating Fish Tolerance to Supersaturated Total Dissolved Gas for Generating Flood Pulse Discharge Patterns Based on a Simulation-optimization Approach[J]. Water Resources Research, 2021, 57(9): e2021WR030167.
[30]
U.S. Environmental Protection Agency. Quality Criteria for Water: EPA 440-9-76-023[S]. Washington, D.C.: U.S. Environmental Protection Agency, 1986.
[31]
Canadian Council of Ministers of the Environment. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Dissolved Gas Supersaturation[M]. Winnipeg: Canadian Council of Ministers of the Environment, 1999.
[32]
王远铭, 张陵蕾, 曾超, 等. 总溶解气体过饱和胁迫下齐口裂腹鱼的耐受和回避特征[J]. 水利学报, 2015, 46(4): 480-488.
(WANG Yuan-ming, ZHANG Ling-lei, ZENG Chao, et al. Tolerance and Avoidance Responses of Schizothorax Pernanti to Total Dissolved Gas Supersaturation[J]. Journal of Hydraulic Engineering, 2015, 46(4): 480-488. (in Chinese))
[33]
WANG Y, LIANG R, LI K, et al. Tolerance and Avoidance Mechanisms of the Rare and Endemic Fish of the Upper Yangtze River to Total Dissolved Gas Supersaturation by Hydropower Stations[J]. River Research and Applications, 2020, 36(7): 993-1003.
[34]
任实. 温度分层水库中密度流运动特性研究[D]. 武汉: 武汉大学, 2016.
(REN Shi. Investigation of Density Current in Thermal Stratified Reservoir[D]. Wuhan: Wuhan University, 2016. (in Chinese))
[35]
BOLSTER D, HANG A, LINDEN P F. The Front Speed of Intrusions into a Continuously Stratified Medium[J]. Journal of Fluid Mechanics, 2008, 594: 369-377.
[36]
CHEONG H B, KUENEN J J P, LINDEN P F. The Front Speed of Intrusive Gravity Currents[J]. Journal of Fluid Mechanics, 2006, 552: 1-11.
[37]
MAURER B D, BOLSTER D T, LINDEN P F. Intrusive Gravity Currents between Two Stably Stratified Fluids[J]. Journal of Fluid Mechanics, 2010, 647: 53-69.
[38]
付健. 水利枢纽下游水体溶解氧超饱和特性分析及预测[D]. 北京: 清华大学, 2009.
(FU Jian. Analysis and Prediction for the Characteristics of Supersaturated Dissolved Oxygen Downstream of Hydrostructures[D]. Beijing: Tsinghua University, 2009. (in Chinese))

基金

国家重点研发计划项目(2022YFC3203904)
国家自然科学基金项目(52130903)
国家自然科学基金项目(U2340218)
中国长江三峡集团科研项目(0704179)
贵州省科技计划项目(黔科合支撑[2021]一般467)
中央级科研院所基本科研业务费项目(CKSF2023401/SL)

编辑: 刘运飞
PDF(2906 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map