中高强混凝土抗压强度与气孔分布特征关系模型研究

杨帅, 毛海涛, 刘畅, 王晓菊

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (4) : 194-202.

PDF(4119 KB)
PDF(4119 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (4) : 194-202. DOI: 10.11988/ckyyb.20221442
水工结构与材料

中高强混凝土抗压强度与气孔分布特征关系模型研究

  • 杨帅1,2, 毛海涛1,2, 刘畅2, 王晓菊1
作者信息 +

Modeling the Relationship between Compressive Strength and Pore Distribution Characteristics of Medium-to-High Strength Concrete

  • YANG Shuai1, MAO Hai-tao1,2, LIU Chang2, WANG Xiao-ju2
Author information +
文章历史 +

摘要

为探究气孔分布特征与中高强混凝土抗压强度之间的定量关系,采用低场核磁共振成像分析系统与全自动压力试验机开展了不同气孔分布特征下的高强混凝土抗压强度试验。通过对Ryshkewitch半经验公式模型进行验证和改进,建立了中高强混凝土抗压强度与孔结构关系模型。结果表明:混凝土孔隙率会随着砂率和初始含气量的增加而逐渐增加,相比于提高砂率,提高初始含气量更容易得到差异性较大的孔隙率;提高砂率使非毛细孔占比增加了17.2%,毛细孔占比降低了13.0%;提高初始含气量使毛细孔占比增加了12.7%,凝胶孔占比降低了12.6%。基于Ryshkewitch半经验公式改进的模型R2接近于1,P值<0.05,可以更准确地描述孔隙分布特征与抗压强度的定量关系。

Abstract

To investigate the quantitative relationship between pore distribution characteristics and the compressive strength of medium-to-high strength concrete, we conducted comprehensive compressive strength tests by using a low-field nuclear magnetic resonance (NMR) imaging analysis system in conjunction with a fully automatic pressure testing machine. By validating and modifying the Ryshkewitch semi-empirical equation model, we established the quantitative relationship model between pore distribution characteristics and compressive strength. Test results demonstrate several key findings. First, an increase in sand rate and initial entrapped air content of concrete leads to a gradual increase in porosity. Increasing the initial air content proves to be more effective in generating a more variable porosity compared to increasing the sand rate. Specifically, by increasing the sand rate, the percentage of non-capillary pores increases by 17.2% while the percentage of capillary pores decreases by 13.0%. On the other hand, increasing the initial air content results in a 12.7% increase in capillary pores and a 12.6% decrease in gel pores. By employing the model based on modified Ryshkewitch semi-empirical equation, we achieved accurate results with an R2 value close to 1 and a P-value less than 0.05, effectively describing the quantitative relationship between pore distribution characteristics and compressive strength.

关键词

中高强混凝土 / 抗压强度 / 气孔分布 / 低频核磁共振 / 砂率 / 初始含气量 / 孔隙率 / Ryshkewitch半经验公式

Key words

medium-to-high strength concrete / compressive strength / pore distribution / low frequency NMR / sand rate / initial air content / porosity / Ryshkewitch semi-empirical equation

引用本文

导出引用
杨帅, 毛海涛, 刘畅, 王晓菊. 中高强混凝土抗压强度与气孔分布特征关系模型研究[J]. raybet体育在线 院报. 2024, 41(4): 194-202 https://doi.org/10.11988/ckyyb.20221442
YANG Shuai, MAO Hai-tao, LIU Chang, WANG Xiao-ju. Modeling the Relationship between Compressive Strength and Pore Distribution Characteristics of Medium-to-High Strength Concrete[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(4): 194-202 https://doi.org/10.11988/ckyyb.20221442
中图分类号: TU528.31   

参考文献

[1] 朱 华, 姬翠翠. 分形理论及其应用[M]. 北京: 科学出版社, 2011: 20-68. (ZHU Hua, JI Cui-cui. Fractal Theory and Its Applications[M]. Beijing: Science Press, 2011: 20-68.(in Chinese))
[2] 银英姿, 雷雅楠, 苏 英. 风积沙混凝土微观结构及孔隙特征研究[J]. 建筑结构, 2021, 51(16): 135-139, 50. (YIN Ying-zi, LEI Ya-nan, SU Ying. Study on Microstructure and Pore Characteristics of Aeolian Sand Concrete[J]. Building Structure, 2021, 51(16): 135-139, 50.(in Chinese))
[3] PANN K S, YEN T, TANG C W, et al. New Strength Model Based on Water-cement Ratio and Capillary Porosity[J]. ACI Materials Journal, 2003, 100(4), Doi: 10.14359/12669.
[4] 赵燕茹, 刘芳芳, 王 磊, 等. 基于孔结构的单面冻后混凝土抗压强度模型研究[J]. 建筑材料学报, 2020, 23(6): 1328-1336, 1344. (ZHAO Yan-ru, LIU Fang-fang, WANG Lei, et al. Modeling of Compressive Strength of Concrete Based on Pore Structure under Single-side Freeze-thaw Condition[J]. Journal of Building Materials, 2020, 23(6): 1328-1336, 1344.(in Chinese))
[5] DEO O, NEITHALATH N. Compressive Behavior of Pervious Concretes and a Quantification of the Influence of Random Pore Structure Features[J]. Materials Science and Engineering: A, 2010, 528(1): 402-412.
[6] LÜ Q, QIU Q, ZHENG J, et al. Fractal Dimension of Concrete Incorporating Silica Fume and Its Correlations to Pore Structure, Strength and Permeability[J]. Construction and Building Materials, 2019, 228: 116986.
[7] LIU P, CUI S, LI Z, et al. Influence of Surrounding Rock Temperature on Mechanical Property and Pore Structure of Concrete for Shotcrete Use in a Hot-Dry Environment of High-temperature Geothermal Tunnel[J]. Construction and Building Materials, 2019, 207: 329-337.
[8] 段 运,杨子江,王起才,等.负温环境下混凝土孔结构与强度和渗透性的关系[J].材料导报,2022,36(15):68-73.(DUAN Yun, YANG Zi-jiang, WANG Qi-cai, et al. Pore Structure of Concrete at Negative Temperature Curing in Relation to Strength and Penetration[J]. Materials Reports, 2022, 36(15): 68-73.(in Chinese))
[9] 周长皓.水泥净浆和砂浆抗压强度与多尺度孔结构的关系研究[D].哈尔滨:哈尔滨工业大学,2020.(ZHOU Chang-hao.Investigations on the Relationships between Compressive Strength of Cement Pastes and Mortars and Their Pore Structure of Multiscale Characteristics[D].Harbin:Harbin Institute of Technology,2020.(in Chinese))
[10] 段珍华, 江山山, 肖建庄,等. 再生粗骨料含水状态对混凝土性能的影响[J]. 建筑材料学报, 2021, 24(3): 545-550. (DUAN Zhen-hua, JIANG Shan-shan, XIAO Jian-zhuang, et al. Effect of Moisture Condition of Recycled Coarse Aggregate on the Properties of Concrete[J]. Journal of Building Materials, 2021, 24(3): 545-550.(in Chinese))
[11] 赵海涛, 相 宇, 刘加平, 等. 钙镁膨胀剂和温升抑制剂对水泥浆体早龄期水化特性影响[J]. 硅酸盐学报, 2021, 49(11): 2509-2517. (ZHAO Hai-tao, XIANG Yu, LIU Jia-ping, et al. Influences of Calcium Oxide-magnesium Oxide Blended Expansive Agent and Temperature Rising Inhibitor on Hydration Characteristic of Early-age Cement Paste[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2509-2517.(in Chinese))
[12] ZHAO H, JIANG K, DI Y, et al. Effects of Curing Temperature and Superabsorbent Polymers on Hydration of Early-age Cement Paste Containing a CaO-based Expansive Additive[J]. Materials and Structures, 2019, 52(6): 108.
[13] ZHOU Chun-sheng,REN Fang-zhou,WANG Zhen-di,et al.Why Permeability to Water is Anomalously Lower Than That to Many Other Fluids for Cement-based Material?[J].Cement and Concrete Research,2017,100:373-384.
[14] 田佳丽,王惠民,刘星星,等.基于NMR耦合实时渗流的砂岩渗透特性研究[J].岩土工程学报,2022,44(9):1671-1678.(TIAN Jia-li, WANG Hui-min, LIU Xing-xing, et al. Permeability Characteristics of Sandstone Based on NMR-coupled Real-time Seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678.(in Chinese))
[15] D'ORAZIO F, BHATTACHARJA S, HALPERIN W P, et al. Molecular Diffusion and Nuclear-magnetic-resonance Relaxation of Water in Unsaturated Porous Silica Glass[J]. Physical Review B, Condensed Matter, 1990, 42(16): 9810-9818.
[16] 谢恩慧,周春圣.利用低场磁共振弛豫测孔技术预测水泥基材料的水分渗透率[J].硅酸盐学报,2020,48(11):1808-1816.(XIE En-hui, ZHOU Chun-sheng. Prediction of Water Permeability for Cement-based Material from the Pore Size Distribution Achieved by Low-field Nuclear Magnetic Resonance Relaxation Technique[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1808-1816.(in Chinese))
[17] 刘 倩, 申向东, 薛慧君, 等. 基于核磁共振技术对不同粗骨料混凝土孔隙特征试验研究[J]. 功能材料, 2017, 48(10): 10066-10070, 10076. (LIU Qian, SHEN Xiang-dong, XUE Hui-jun, et al. Experimental Study on Pore Characteristics of Different Coarse Aggregate Concrete Based on NMR Technique[J]. Journal of Functional Materials, 2017, 48(10): 10066-10070, 10076.(in Chinese))
[18] 王海龙, 张 克, 额日德木. 改性橡胶对轻骨料混凝土改性作用分析[J]. 建筑材料学报, 2017, 20(5): 780-786. (WANG Hai-long, ZHANG Ke, ER Ridemu. Modification Effect Analysis of Modified Rubber Crumb on Lightweight Aggregate Concrete[J]. Journal of Building Materials, 2017, 20(5): 780-786.(in Chinese))
[19] 杨 耀.基于核磁共振技术的混凝土干湿—冻融循环破坏研究[D].哈尔滨:哈尔滨工业大学,2019.(YANG Yao.Research on Destruction of Concrete under Condition of Wetting-drying and Freezing-thawing Cycles Based on Nuclear Magnetic Resonance Technology[D].Harbin:Harbin Institute of Technology,2019.(in Chinese))
[20] JENNINGS H M. Refinements to Colloid Model of C-S-H in Cement: CM-II[J]. Cement and Concrete Research, 2008, 38(3): 275-289.
[21] MEHTA P K, MONTEIRO P. Concrete: Microstructure, Properties, and Materials[M]. Englewood Cliffs: Prentice Hall, 2013: 32-33.
[22] 佘安明,马 坤,王中平,等.低场核磁共振低温测孔技术表征硬化水泥浆体孔结构[J].建筑材料学报,2021,24(5):916-920.(SHE An-ming,MA Kun,WANG Zhong-ping,et al.Characterization of Pore Structure in Hardened Cement Paste by Low Field NMR Cryoporometry[J]. Journal of Building Materials, 2021, 24(5): 916-920.(in Chinese))
[23] 郭晓潞, 宋 猛. 蒸压加气混凝土的孔结构及表征方法研究进展[J]. 材料导报, 2018, 32(增刊2): 440-445. (GUO Xiao-lu, SONG Meng. Research Progress on Pore Structure and Characterization Method of Autoclaved Aerated Concrete[J]. Materials Reports, 2018, 32(Supp.2): 440-445.(in Chinese))

基金

国家自然科学青年基金项目(42207102);山西省自然科学基金面上项目(202103021224151,202103021223132);山西农业大学 211 省改革高层次人才引进项目(2021XG009)

PDF(4119 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map