砂化白云岩地层在滇中引水工程玉溪段输水隧洞中广泛分布,该地层中修建的小扑、扯纳苴等隧洞常出现塌方、突水涌砂等地质灾害,严重影响施工安全。科学合理地划分白云岩砂化等级,对施工过程中的灾害防控具有重要意义。从3个方面选取12个能够准确描述白云岩砂化程度的指标,建立白云岩砂化等级划分层次结构模型,将白云岩划分为微砂化、弱砂化(下段和上段)、强烈砂化(下段和上段)、剧烈砂化4个等级,运用模糊层次分析法进行白云岩砂化等级划分。选取小扑2#主洞上游部分洞段建立模型并划分砂化等级。结果表明,该方法通过定性与定量相结合的方式实现了白云岩砂化等级划分,其划分结果与工程实际情况基本相符。
Abstract
Sandy dolomite stratum is widely distributed in the water conveyance tunnel of Yuxi segment of the Central Yunnan Water Diversion Project. Geological disasters such as collapse, water inrush and sand gushing often occur in the tunnels built in this stratum, which seriously affect construction safety. It is of great significance to scientifically and reasonably classify the level of dolomite sandification for disaster prevention and control in the construction process. In this paper, a hierarchical structure model consisting 12 indexes that accurately describe the degree of dolomite sandification is established by using the Fuzzy AHP method. The level of dolomite sandification is divided into slight sandification, weak sandification (lower section and upper section), strong sandification (lower section and upper section), as well as severe sandification. The upstream segment of Xiaopu 2# main tunnel is selected for model establishment and sandification level division. Results demonstrate that the method accomplishes the classification of dolomite sandification level by both qualitative and quantitative approaches, and the classification results are basically consistent with the current situation of the project.
关键词
白云岩砂化 /
砂化等级划分 /
模糊层次分析法 /
砂化指标 /
滇中引水工程
Key words
dolomite sandification /
sandification degree classification /
Fuzzy AHP /
sandification indices /
Central Yunnan Water Diversion Project
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王志杰, 杜逸文, 姜逸帆,等. 砂化白云岩地层隧道掌子面失稳机制研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3118-3126.
[2] JIANG Yi-fan, ZHOU Ping, ZHOU Fei-cong, et al. Failure Analysis and Control Measures for Tunnel Faces in Water-Rich Sandy Dolomite Formations[J]. Engineering Failure Analysis, 2022, 138(6): 106350.
[3] ZHOU Ping, JIANG Yi-fan, ZHOU Fei-cong, et al. Disaster Mechanism of Tunnel Face with Large Section in Sandy Dolomite Stratum[J]. Engineering Failure Analysis, 2022, 131: 105905.
[4] 何文秀. 美姑河坪头水电站厂址区白云岩砂化成因及其对工程影响研究[D]. 成都: 成都理工大学, 2008.
[5] 胡相波. 美姑河坪头水电站岸坡深部白云岩岩溶砂化特征及机理研究[D]. 成都: 成都理工大学, 2009.
[6] 张良喜. 白云岩岩溶砂化形成机理及其工程特性研究[D]. 成都: 成都理工大学, 2012.
[7] 张海泉, 赵其华, 彭社琴. 美姑河坪头水电站深部白云岩岩溶砂化岩体质量分级[J]. 中国农村水利水电, 2012(7): 151-155.
[8] 李建国, 沐红元, 米 健. 砂化白云岩工程地质特性初步研究[C] //刘志明, 温续余, 尹讯飞. 第2届全国岩石隧道掘进机工程技术研讨会论文集. 北京: 中国水利水电出版社, 2018: 52-58.
[9] RICHTER D K, GILLHAUS A, NEUSER R D. The Alteration and Disintegration of Dolostones with Stoichiometric Dolomite Crystals to Dolomite Sand: New Insights from the Franconian Alb (Upper Jurassic, SE Germany)[J]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (ZDGG), 2018, 169(1): 27-46.
[10] 王朋朋, 姚 静, 姜 笠. 贵州白云岩砂化特征及其对隧道支护结构影响[J]. 贵州大学学报(自然科学版), 2019, 36(3): 44-48.
[11] PALMSTROM A.Measurements of and Correlations Between Block Size and Rock Quality Designation(RQD)[J].Tunnelling and Underground Space Technology, 2005, 20(4): 362-377.
[12] GB/T 50218—2014, 工程岩体分级标准[S]. 北京: 中国计划出版社,2014.
[13] 刘宇恒, 邓 辉, 熊倩莹. 基于层次分析法的茂县斜坡地质灾害易发性评价[J]. raybet体育在线
院报, 2017, 34(5): 31-35.
[14] 屈飞行, 汤明高, 王自高,等. 地质灾害危险性区划中不同权重计算方法的对比分析[J]. 水利水电技术, 2016, 47(11): 136-140.
[15] 田小甫. 太原晋阳大佛边坡岩体风化分级及地震稳定性评价研究[D]. 北京: 中国地质大学(北京), 2009.
[16] 赵毅然. 滇中引水工程强烈-剧烈砂化白云岩物理力学特性研究[D]. 昆明: 昆明理工大学, 2021.
基金
国家自然科学基金项目(42162026);云南省应用基础研究计划项目(202201AT070083);云南省重大科技专项计划项目(202002AF080003)