春融期,受冻融影响,季冻区边坡极易出现浅层热融滑塌现象,为研究春融期生态边坡的稳定性,通过室内冻融界面直剪试验,将根系简化为主根型,对比分析了素土及根-土复合体冻融界面处土体的抗剪强度指标变化规律;结合数值模拟,对比分析有无冻融界面试样塑性区的剪切破坏情况,建立模型,计算植物根系穿过冻融界面土体时的边坡安全系数。结果表明:随冻融次数增加,素土冻融界面土体抗剪强度损伤程度大于根-土复合体,素土及根-土复合体冻融界面处土体黏聚力均降低,而摩擦角均增加;冻融界面试样的剪切塑性区主要于正融区土体内发展,且剪切塑性区体积明显大于无冻融界面试样;根系穿过冻融界面土体时,显著提高冻融界面土体的抗剪强度,增强春融期边坡的稳定性。研究成果可为季冻区生态边坡工程的设计、施工和维护提供有效的科学依据。
Abstract
In spring thawing period, slopes in seasonal frozen zone is susceptible to shallow slide due to thermal thawing. To investigate the stability of ecological slopes during this period, laboratory direct shear tests were conducted on the freeze-thaw interfaces of plain soil and root-soil composites. The root system was simplified as taproot type. The variation in shear strength indices of both soils was compared and analyzed. Through numerical simulation, the shear failure in the plastic zone of samples in the presence or in the absence of freeze-thaw interface was analyzed, and a model was developed to calculate the safety factor of slope stability when plant roots penetrate the freeze-thaw interface. Results indicate that as freeze-thaw cycles increase, the damage to the shear strength of plain soil at the freeze-thaw interface is greater than that of root-soil composite. Additionally, the cohesion of soil at the interface decreases, while friction angle increases for both plain soil and root-soil composite. The shear plastic zone of samples with freeze-thaw interface primarily develops within the soil body in the normal thawing zone and exhibits a significantly larger volume compared to samples with no freeze-thaw interface. By passing through the freeze-thaw interface, roots significantly raise the shear strength of the soil, thus enhancing the slope stability in spring thawing period. These findings provide a scientific foundation for the design, construction, and maintenance of ecological slope projects in seasonal frozen regions.
关键词
根-土复合体 /
冻融循环 /
冻融界面 /
直剪试验 /
边坡稳定性
Key words
root-soil composite /
freeze-thaw cycle /
freeze-thaw interface /
direct shear test /
slope stability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 葛 琪, 李京子, 武 鹤, 等. 基于有限差分法的季冻区公路土质路堑边坡稳定性分析[J]. 黑龙江工程学院学报, 2017, 31(1): 12-14, 18.
[2] 靳德武, 牛富俊, 李 宁. 青藏高原多年冻土区斜坡稳定性研究进展[J]. 水文地质工程地质, 2006, 33(4): 98-102.
[3] 武 鹤, 刘莹莹, 葛 琪. 土质路堑边坡冻融浅层的滑塌机理与数值模拟[J]. 黑龙江科技大学学报, 2017, 27(5): 503-507.
[4] 程永春, 葛 琪, 何 锋. 季冻区土质边坡滑动界面临界深度的试验研究[J]. 岩土力学, 2010, 31(4): 1042-1046.
[5] 邓爱平. 基于冻融界面对路基土体抗剪强度的影响研究[J]. 湖南交通科技, 2017, 43(3): 91-93.
[6] 葛 琪, 李京子, 武 鹤, 等. 寒区公路土质边坡冻融界面的抗剪强度试验[J]. 交通科技与经济, 2017, 19(1): 39-41, 45.
[7] 汪恩良, 肖 尧, 许春光, 等. 封闭条件下粉质黏土冻融交界面抗剪强度研究[J]. 东北农业大学学报, 2020, 51(3): 61-70.
[8] 王 博, 刘志强, 赵晓东, 等. 高压正融土与结构接触面剪切力学特性试验研究[J]. 岩土力学, 2017, 38(12): 3540-3546.
[9] 陈国良,牛富俊,穆彦虎,等.季冻区矿山排土场粗粒土冻融界面剪切性能研究[J].金属矿山,2018(12):150-156.
[10] QU Y L, NI W K, NIU F J, et al. Shear Properties and Mechanism of Freeze-Thaw Interface in Unsaturated Coarse-grained Soil from Qinghai-Tibet Plateau[J]. Advances in Civil Engineering, 2021, 7: 1-12.
[11] BAETS S D,POESEN J,REUBENS B, et al. Root Tensile Strength and Root Distribution of Typical Mediterranean Plant Species and Their Contribution to Soil Shear Strength[J]. Plant & Soil, 2008,305(Supp.1): 207-226.
[12] 黄 钢, 郑明新, 王 庆, 等. 考虑降雨入渗条件的植被边坡稳定性评价[J]. raybet体育在线
院报, 2020, 37(4): 160-167.
[13] 卢海静, 胡夏嵩, 付江涛, 等. 寒旱环境植物根系增强边坡土体抗剪强度的原位剪切试验研究[J]. 岩石力学与工程学报, 2016, 35(8): 1712-1721.
[14] 刘向峰,郝国亮,于 冰.露天矿排土场草本植物根系加固效果[J].raybet体育在线
院报,2022,39(5):83-88.
[15] 王恒星, 杨 林. 冻融作用下草本植物根系加固土体试验研究[J]. 冰川冻土, 2018, 40(4): 792-801.
[16] 刘红军, 郭 颖, 单 炜, 等. 土质路堑边坡冻融失稳及植被护坡机理研究[J]. 岩土工程学报, 2011, 33(8): 1197-1203.
[17] WU T H, MCKINNELL III W P, SWANSTON D N. Strength of Tree Roots and Landslides on Prince of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1): 19-33.
[18] 景常荣. 斜坡稳定性安全系数的统一解[J]. 地下空间与工程学报, 2007, 3(增刊2): 1537-1540.