电阻率结构特性参数作为土体结构的量化参考指标,能有效地反映土体压缩固结过程中的结构变化特征。以云南红黏土为例,通过改进的固结压缩电阻率测试仪,测试固结压缩过程中红黏土的竖向和横向电阻率,探讨电阻率结构特性参数(结构因子、形状因子、各向异性系数)的变化规律,采用综合指数法和主成分分析法提出了红黏土压实度的电阻率结构特性参数综合评价指标。结果表明:随着竖向多级荷载连续施加,红黏土竖向电阻率、横向电阻率、平均结构因子和平均形状因子均呈现逐渐下降趋势,而各向异性系数呈现先下降,后缓慢上升至稳定趋势;电阻率结构特性参数能间接反映红黏土的结构强度和颗粒间胶结状态,红黏土结构特性综合评价指标ER与压实度K之间存在定量化关系,拟合精度较高。采用该指标评价红黏土压实度具有可行性,可为红黏土碾压工程压实度的快速检测提供更为便捷的途径参考。
Abstract
Resistivity parameters related to structural properties are effective indicators of soil structure changes during compression and consolidation, and play a crucial role in quantifying these changes. We employed a modified resistivity instrument to test the vertical and lateral resistivities of Yunnan laterite during compression and consolidation. By investigating the variations of resistivity parameters (including structure factor, shape factor, and anisotropy coefficient), we aimed to analyze the changes in laterite soil structure. By using comprehensive index method and principal component analysis method, we put forward an integrated index to comprehensively evaluate the resistivity parameters related to structural properties and soil compaction. Results demonstrate that the vertical resistivity, lateral resistivity, average structure factor, and average shape factor of laterite gradually decrease as the vertical multi-stage load increases. Conversely, the anisotropy coefficients exhibit an initial decrease followed by a gradual increase to stability. Resistivity parameters indirectly reflect the structural strength and particles cementation of laterite. Additionally, the proposed comprehensive evaluation index ER is quantitatively correlated with compactness K with high fitting accuracy. In conclusion, the proposed index proves to be a feasible tool for estimating the compactness of laterite and offers a convenient approach for the rapid evaluation of compactness in rolling projects.
关键词
红黏土 /
电阻率 /
固结压缩 /
结构特性 /
压实度
Key words
laterite /
resistivity /
consolidation and compression /
structural property /
compactness
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾 静, 邓志斌, 兰 霞, 等. 竹城公路高液限土与红黏土路用性能的试验研究[J]. 岩土力学, 2006, 27(1): 89-92, 98.
[2] 张培培, 罗保才, 刘娉慧, 等. 含水率对红黏土强度特性的影响[J]. 水力发电, 2019, 45(5): 45-49.
[3] 傅鑫晖, 颜荣涛, 于海浩, 等. 红黏土的强度机理[J]. 桂林理工大学学报, 2014, 34(4): 691-696.
[4] 周训华, 廖义玲. 红黏土颗粒之间结构连结的胶体化学特征[J]. 贵州工业大学学报(自然科学版), 2004, 33(1): 26-29.
[5] ARCHIE G E. The Electric Resistivity Log as Aid in Determining Some Reservoir Characteristics[J]. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 1942, 146(1): 54-62.
[6] ARULANANDA N K, MURALEETHARAN K K. Level Ground Soil-Liquefaction Analysis Using in Situ Properties: II[J]. Journal of Geotechnical Engineering, 1988, 114(7):771-790.
[7] HUNTLEY D. Relations between Permeability and Electrical Resistivity in Granular Aquifers[J]. Groundwater, 1986, 24(4): 466-474.
[8] 于小军, 刘松玉. 电阻率指标在膨胀土结构研究中的应用探讨[J]. 岩土工程学报, 2004, 26(3): 393-396.
[9] 顾明芬,刘松玉,洪振舜,等.水泥土结构特性的定量化研究[J].岩土力学,2005,26(11):1862-1865, 1868.
[10] 董晓强,白晓红,吕永康,等.污染对水泥土电阻率特性影响的试验研究[J]. 岩土力学,2011,32(1):91-94.
[11] 黄凤凤, 周 伟, 刘彦忠, 等. 水玻璃固化黄土过程中电阻率参数的试验研究[J]. 广西大学学报(自然科学版), 2015, 40(1): 213-219.
[12] 查甫生, 刘晶晶, 许 龙, 等. 水泥-粉煤灰固化/稳定重金属污染土的电阻率特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580, 4606.
[13] PARVIN K K, KORD S, SOLEYMANZADEH A. The Effect of Pressure on Electrical Rock Typing, Formation Resistivity Factor, and Cementation Factor[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108757.
[14] GB/T 50123—2019,土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
[15] 查甫生, 刘松玉, 杜延军, 等. 基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J]. 岩土工程学报, 2008, 30(12): 1832-1839.
[16] 张坤勇, 殷宗泽, 梅国雄. 土体各向异性研究进展[J]. 岩土力学, 2004, 25(9): 1503-1509.
[17] HOLTZ R D, KOVACS W D. An Introduction to Geotechnical Engineering[M]. Englewood Cliffs, New Jersy: Prentice-Hall, 1981.
[18] LAMBE T W. The Structure of Compacted Clays[J]. Journal of the Soil Mechanics and Foundations Division, 1958, 84(2): 1654-1-1654-34.
[19] 周冬冬, 刘建刚, 蒋甫玉. 高密度电法在挡墙测量中的应用[J]. raybet体育在线
院报, 2015, 32(2): 68-71.
[20] 李文忠, 孙卫民. 分布式高密度电法装置类型选择及工程勘查应用[J]. raybet体育在线
院报, 2019, 36(10): 161-164.
[21] 樊炳森, 郭成超. 高密度电法在水库渗漏检测中的应用[J]. raybet体育在线
院报, 2019, 36(10): 165-168.
[22] JTG/T 3610—2019,公路路基施工技术规范[S]. 北京:人民交通出版社,2019.
基金
国家自然科学基金项目(41867040);云南省基础研究计划面上基金项目(202101AT070271);云南省高层次人才培养支持计划“青年拔尖人才”专项(YNWR-QNBJ-2020-030)