高温作用下砂岩声发射特征及破坏前兆

王小林, 温仕轩, 王煜东, 张亮, 雷瑞德

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (11) : 118-124.

PDF(7445 KB)
PDF(7445 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (11) : 118-124. DOI: 10.11988/ckyyb.20220606
岩土工程

高温作用下砂岩声发射特征及破坏前兆

  • 王小林1, 温仕轩1, 王煜东2, 张亮1, 雷瑞德3,4
作者信息 +

Acoustic Emission Characteristics and Failure Precursor of Sandstone in High Temperature

  • WANG Xiao-lin1, WEN Shi-xuan1, WANG Yu-dong2, ZHANG Liang1, LEI Rui-de3,4
Author information +
文章历史 +

摘要

为探究不同温度作用后砂岩声发射多重分形特征及破坏前兆信息,对不同温度加热后砂岩开展室内单轴加载试验,研究试样破坏过程中裂纹起裂应力、损伤应力、峰值应力及声发射特征等的演化规律。试验结果表明:借助声发射技术量化识别了加载过程中不同温度加热后砂岩的裂纹起裂应力和损伤应力门槛,随着温度的增加,不同裂纹应力门槛呈现出先增加后降低的演化规律,裂纹起裂扩展阶段占比逐渐降低。当应力水平由0~0.2σc增至峰后阶段时,多重分形谱宽度呈现出先降低后增加的趋势,该结论进一步证实了加载过程中砂岩内部结构产生的变化。声发射b值总体上呈现出先增加后降低的变化规律,试样失稳破断前声发射b值急剧下降,声发射b值急剧下降阶段可作为失稳突变前兆信息点。

Abstract

To investigate the multifractal characteristics of acoustic emission (AE) and failure precursory information in thermally-treated sandstone, we conducted indoor uniaxial compressive tests on sandstone samples subjected to different temperatures. We systematically analyzed the evolution of crack initiation stress, damage stress, peak stress, and AE characteristics throughout the failure process. The experimental results demonstrate that AE technology enables quantitative identification of crack initiation and damage stresses in thermally-treated sandstone. With increasing temperature, different crack stress thresholds exhibit a consistent evolution trend, initially increasing and then decreasing. The proportion of crack initiation and propagation gradually diminishes. As the stress level rises from 0.2σc to the post-peak stage, the width of the multifractal spectrum initially decreases and subsequently increases. This observation further confirms the structural changes occurring within thermally-treated sandstone. During the initial loading stage, the AE-b value experiences an initial increase followed by a decrease. Subsequently, as the sample approaches the unstable failure stage, the AE-b value sharply decreases, which can be considered a precursor to the instability fracture of thermally-treated sandstone.

关键词

砂岩 / 高温作用 / 声发射 / 多重分形 / 裂纹应力

Key words

sandstone / high temperature / acoustic emission / multifractal / crack stress

引用本文

导出引用
王小林, 温仕轩, 王煜东, 张亮, 雷瑞德. 高温作用下砂岩声发射特征及破坏前兆[J]. raybet体育在线 院报. 2023, 40(11): 118-124 https://doi.org/10.11988/ckyyb.20220606
WANG Xiao-lin, WEN Shi-xuan, WANG Yu-dong, ZHANG Liang, LEI Rui-de. Acoustic Emission Characteristics and Failure Precursor of Sandstone in High Temperature[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(11): 118-124 https://doi.org/10.11988/ckyyb.20220606
中图分类号: TU452   

参考文献

[1]AXELSSON G. Sustainable Geothermal Utilization—Case Histories, Definitions, Research Issues and Modelling[J]. Geothermics, 2010, 39(4): 283-291.
[2] ALISHAEV M G, ABDULAGATOV I M,ABDULAGATOVA Z Z. Effective Thermal Conductivity of Fluid-Saturated Rocks[J]. Engineering Geology, 2012, 135/136: 24-39.
[3] SAIF T, LIN Q, BIJELJIC B,et al. Microstructural Imaging and Characterization of Oil Shale before and after Pyrolysis[J]. Fuel, 2017, 197: 562-574.
[4] KUMARI W G P,RANJITH P G,PERERA M S A,et al. Mechanical Behaviour of Australian Strathbogie Granite under In-Situ Stress and Temperature Conditions: an Application to Geothermal Energy Extraction[J]. Geothermics, 2017, 65: 44-59.
[5] 郭 政, 赵星光, 李鹏飞, 等. 热处理北山花岗岩热传导特性研究[J]. raybet体育在线 院报, 2018, 35(3): 45-51, 58.
[6] LEI R,WANG Y,ZHANG L,et al. The Evolution of Sandstone Microstructure and Mechanical Properties with Thermal Damage[J]. Energy Science & Engineering, 2019, 7(6): 3058-3075.
[7] 张 乐, 张 伟, 贺甲元, 等. 急剧冷却作用下高温岩石细观损伤与增渗机制研究[J]. 地球物理学进展, 2022, 37(2): 551-560.
[8] LIU S,LI X,WANG D,et al. Experimental Study on Temperature Response of Different Ranks of Coal to Liquid Nitrogen Soaking[J]. Natural Resources Research, 2021, 30(2): 1467-1480.
[9] XIAO W, YU G, LI H,et al. Experimental Study on the Failure Process of Sandstone Subjected to Cyclic Loading and Unloading after High Temperature Treatment[J]. Engineering Geology, 2021, 293: 106305.
[10] YANG S Q, RANJITH P G, JING H W,et al. An Experimental Investigation on Thermal Damage and Failure Mechanical Behavior of Granite after Exposure to Different High Temperature Treatments[J]. Geothermics, 2017, 65: 180-197.
[11] 蒋浩鹏,姜谙男,杨秀荣. 基于Weibull分布的高温岩石统计损伤本构模型及其验证[J]. 岩石力学与工程学报,2021,42(7):1894-1902.
[12] 赵怡晴,吴常贵,金爱兵,等.热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学,2020,41(7):2233-2240.
[13] 孙 博, 任富强, 刘冬桥. 基于声发射多重分形特征的层状板岩失稳前兆研究[J]. 岩土力学, 2022, 43(3): 749-760.
[14] 徐 婕, 徐 宁, 蒋景东. 基于声发射监测的不同加卸荷路径下砂岩破坏前兆信息研究[J]. 水利与建筑工程学报, 2021, 19(1): 170-175, 230.
[15] 杨宇江, 李元辉. 数值岩石试样破裂过程多重分形特征[J]. 计算力学学报, 2016, 33(5): 796-801.
[16] 闵 明, 张 强, 蒋斌松, 等. 实时高温下北山花岗岩劈裂试验及声发射特性[J]. raybet体育在线 院报, 2020, 37(3): 108-113.
[17] 何 涛,曹雅娴.高温后岩石三轴变形及渗透率演化规律[J]. raybet体育在线 院报,2018,35(11):107-111,116.
[18] ISRM Testing Commission. Suggested Methods for Determining Tensile Strength of Rock Materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(3): 99-103.
[19] SHAO S, RANJITH P G, WASANTHA P L P, et al. Experimental and Numerical Studies on the Mechanical Behaviour of Australian Strathbogie Granite at High Temperatures: An Application to Geothermal Energy[J]. Geothermics, 2015, 54: 96-108.
[20] ZHOU J, YANG K, ZHOU L, et al. Microstructure and Mechanical Properties Alterations in Shale Treated via CO2/CO2-Water Exposure[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108088.
[21] KONG B, WANG E, LI Z,et al. Nonlinear Characteristics of Acoustic Emissions during the Deformation and Fracture of Sandstone Subjected to Thermal Treatment[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 90: 43-52.
[22] LI X L, CHEN S J, LIU S M, et al. AE Waveform Characteristics of Rock Mass under Uniaxial Loading Based on Hilbert-Huang Transform[J]. Journal of Central South University, 2021, 28(6): 1843-1856.
[23] LEI R, ZHANG Z, BERTO F,et al. Cracking Process and Acoustic Emission Characteristics of Sandstone with Two Parallel Filled-Flaws under Biaxial Compression[J]. Engineering Fracture Mechanics, 2020, 237: 107253.
[24] 李元辉, 刘建坡, 赵兴东, 等. 岩石破裂过程中的声发射b值及分形特征研究[J]. 岩土力学, 2009, 30(9): 2559-2563, 2574.
[25] 张黎明, 马绍琼, 任明远, 等. 不同围压下岩石破坏过程的声发射频率及b值特征[J]. 岩石力学与工程学报, 2015, 34(10): 2057-2063.
[26] 刘希灵, 刘 周, 李夕兵, 等. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(增刊1): 267-274.

基金

四川省自然科学基金项目(2022NSFSC1033);桥梁无损检测与工程计算四川省高校重点实验室开放课题基金项目(2022QZJ01)

PDF(7445 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map