水溶性渗透结晶(WCCW)材料能够修复受损混凝土并提高耐久性能。研究了WCCW材料对混凝土早期抗裂性能、抗压强度和抗氯离子侵蚀性能的影响,并借助扫描电子显微镜(SEM)、傅里叶变换红外(FTIR)和能谱分析(EDS)技术,研究了硬化水泥石微观结构的变化情况、水化硅酸钙(CSH)凝胶的聚合程度以及WCCW材料的渗透深度。结果表明:WCCW材料能够改善混凝土表观质量、提高早期抗裂性能、抗压强度和抗氯离子侵蚀性能,并增大CSH凝胶的聚合程度、增强微观结构的密实程度。WCCW材料渗透遵循Fick定律,最大渗透深度可达10~12 mm。混凝土强度等级和再养护龄期对作用效果有影响,再养护龄期超过14 d后的作用效果变化较小。
Abstract
Water-based infiltration capillary/crystalline waterproof (WCCW) material can repair damaged concrete and improve concrete's durability. We investigated the impact of WCCW material on early cracking resistance, compressive strength, and chloride ion corrosion resistance in concrete. Moreover, we examined the microstructure morphology of hardened cement pastes using scanning electron microscopy (SEM), the polymerization of Calcium Silicate Hydrate (CSH) gel via Fourier transform infrared spectroscopy (FTIR), and analyzed the penetration depth of WCCW material through energy-dispersive spectrometry (EDS). Experimental findings demonstrate several benefits of WCCW material, including improved appearance quality of concrete, enhanced early cracking resistance, compressive strength, and chloride ion corrosion resistance. Additionally, the material enhances the polymerization of CSH gel and increases the density of concrete. WCCW material penetrates to a maximum depth of 10 mm to 12 mm, obeying Fick's law of diffusion. The strength and curing age of concrete also affect the performance of WCCW material, and the optimal curing age is 14 days.
关键词
混凝土 /
水溶性 /
渗透结晶材料 /
抗渗性能 /
渗透深度 /
作用机理
Key words
concrete /
water-based /
infiltration capillary/crystalline material /
anti-permeability /
penetration depth /
mechanism of action
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王媛怡,陈 亮,汪在芹.水工混凝土大坝表面防护涂层材料研究进展[J]. 材料导报,2016,30(9):81-86.
[2] ZHANG Y, ZUO L, YANG J, et al. Effect of Cementitious Capillary Crystalline Waterproofing Coating on the Gas Permeability of Mortar[J]. Structural Concrete, 2019, 20(5): 1763-1770.
[3] 匡亚川,欧进萍. 混凝土的渗透结晶自修复试验与研究[J]. 铁道科学与工程学报. 2008, 5(1): 6-10.
[4] RAVITHEJA A, REDDY T, CHANDRA S, et al. Self-healing Concrete with Crystalline Admixture—A Review[J]. Journal of Wuhan University of Technology-Material Science Edition, 2019, 34(5): 1143-1154.
[5] TENG L W, HUANG R, CHEN J, et al. A Study of Crystalline Mechanism of Penetration Sealer Materials[J]. Materials, 2014, 7(1): 399-412.
[6] 姜 骞, 穆 松, 刘建忠, 等. 水性渗透结晶材料对混凝土性能提升研究及机理分析[J]. 新型建筑材料, 2016, 43(3): 49-52, 89.
[7] FERRARA L, KRELANI V, MORETTI F. On the Use of Crystalline Admixtures in Cement Based Construction Materials: From Porosity Reducers to Promoters of Self Healing[J]. Smart Materials and Structures, 2016, 25(8): 0840-0849.
[8] 黄 波, 邓德华, 陈蕙玉. 深度渗透密封剂(DPS)对混凝土抗硫酸盐侵蚀性能的影响[J]. 中南大学学报(自然科学版), 2011, 42(12): 3858-3863.
[9] JC/T 1018—2020,水性渗透型无机防水剂[S]. 北京: 中国建材工业出版社.
[10] WANG J, NG P-L, SU H, et al. Meso-scale Modelling of Stress Effect on Chloride Diffusion in Concrete Using Three-phase Composite Sphere Model[J]. Materials and Structures, 2019, 52(3): 1-23.
[11] LI G, HUANG X, LIN J, et al. Activated Chemicals of Cementitious Capillary Crystalline Waterproofing Materials and Their Self-healing Behaviour[J]. Construction and Building Materials, 2019, 200: 36-45.
[12] 马文娟. 渗透结晶型防水剂研究及其在AAR病害治理中的应用探讨[D]. 成都: 西南交通大学, 2005.
基金
国家自然基金项目(U2040222,52179122);中央级公益性科研院所基本科研业务费项目(CKSF2021456/CL);水利部先进适用技术示范项目(SF-2021-02)