长江源高寒草地存在不同程度的退化,导致局部水土流失仍呈增加的趋势。为研究高寒草地退化对土壤分离速率的影响,开展不同植被退化程度坡面径流冲刷试验。结果表明,植被完全退化坡面的高山草甸土平均分离速率(0.54 g/(cm2·min))显著大于重度和中度退化坡面(0.34和0.12 g/(cm2·min)),并远大于轻度退化的坡面(0.03 g/(cm2·min));完全退化坡面的淡寒钙土平均分离速率(4.29 g/(cm2·min))分别是寒钙土、草甸沼泽土和高山草甸土的3.25、7.27和7.94倍。不同退化程度的土壤分离速率随水流剪切力、径流功率与过水断面单位能量的增加,均呈较好的线性或幂函数关系,但与水流功率的拟合效果最好。在相同水流功率条件下,长江源土壤分离速率大于西南及黄土高原地区。本研究可为长江源区土壤侵蚀机理的研究和水土保持措施优化配置提供参考。
Abstract
The alpine grassland in the source of the Changjiang River has degraded to different degrees, resulting in an increasing trend of local soil erosion. To study the effect of alpine grassland degradation on soil detachment rate, we conducted runoff scour experiments on slopes with different vegetation degradation degrees. Results show that the average detachment rate of alpine meadow soil on fully degraded slopes is 0.54 g/(cm2·min), significantly higher than those on severely (0.34 g/(cm2·min)) and moderately degraded slopes (0.12 g/(cm2·min)), and much more higher than that on lightly degraded slopes (0.03 g/(cm2·min)). The average detachment rate of lightly frigid calcic soils on fully degraded slopes is 4.29 g/(cm2·min), 3.25, 7.27 and 7.94 times that of frigid calcic soil, meadow swamp soil and alpine meadow soil, respectively. Soil detachment rates on slopes of different degradation degrees have a good linear or power function relationship with the increase of shear force of water flow, runoff power and unit energy of water cross section, but have the best fitting effect with water flow power. Under the same flow power condition, soil detachment rate in the source region of the Changjiang River is higher than those in the southwest and the loess plateau. The findings can provide reference for studying soil erosion mechanism and optimal allocation of soil and water conservation measures in the source region of the Changjiang River.
关键词
长江源 /
高寒草地 /
土壤侵蚀 /
植被退化 /
土壤分离速率
Key words
headwaters of the Changjiang River /
alpine grassland /
soil erosion /
vegetation degradation /
soil detachment rate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG G H, LIU B Y, LIU G B, et al. Detachment of Undisturbed Soil by Shallow Flow. Soil Science Society of America Journal, 2003, 67(3): 713.
[2] 张冠华, 胡甲均. 径流驱动土壤分离过程的影响因素及机制研究进展. 水科学进展, 2019, 30(2): 294-304.
[3] 丁文峰. 紫色土和红壤坡面径流分离速度与水动力学参数关系研究. 泥沙研究, 2010(6): 16-22.
[4] LI M, HAI X, HONG H, et al. Modelling Soil Detachment by Overland Flow for the Soil in the Tibet Plateau of China. Scientific Reports, 2019, 9: 8063.
[5] BURYLO M, REY F, MATHYS N, et al. Plant Root Traits Affecting the Resistance of Soils to Concentrated Flow Erosion. Earth Surface Processes and Landforms, 2012, 37(14): 1463-1470.
[6] YE C, GUO Z, LI Z, et al. The Effect of Bahiagrass Roots on Soil Erosion Resistance of Aquults in Subtropical China. Geomorphology, 2017, 285: 82-93.
[7] GYSSELS G, POESEN J, LIU G, et al. Effects of Cereal Roots on Detachment Rates of Single-and Double-Drilled Topsoils during Concentrated Flow. European Journal of Soil Science, 2006, 57(3): 381-391.
[8] WANG B, ZHANG G H, SHI Y Y, et al. Soil Detachment by Overland Flow under Different Vegetation Restoration Models in the Loess Plateau of China. CATENA, 2014, 116: 51-59.
[9] 李建明, 张长伟, 王志刚, 等. 不同植被类型对堆积体坡面径流特性的影响. raybet体育在线
院报, 2021, 38(10): 60-68.
[10] 吴志广, 徐 平, 赵良元,等. 长江源区综合科学考察报告2019. 武汉: 长江出版社, 2020.
[11] 常福宣, 洪晓峰. 长江源区水循环研究现状及问题思考. raybet体育在线
院报, 2021, 38(7): 1-6.
[12] 邵全琴, 樊江文, 刘纪远, 等. 三江源生态保护和建设一期工程生态成效评估. 地理学报, 2016, 71(1): 3-20.
[13] 秦海蓉, 陈长成, 胡月明, 等. 青海省高寒草地土壤侵蚀强度及其空间分布特点. 草地学报, 2021, 29(增刊1): 104-112.
[14] 贺 倩, 戴晓爱. 基于LMDI模型的三江源区植被对土壤侵蚀变化影响的定量分析. raybet体育在线
院报, 2020, 37(7): 61-67.
[15] 闫 霞, 周银军, 姚仕明. 长江源区河流地貌及水沙特性. raybet体育在线
院报, 2019, 36(12): 10-15.
[16] 李志威, 吴叶舟, 胡旭跃, 等. 长江源通天河段辫状河道形态特征与变化规律. raybet体育在线
院报, 2018, 35(9): 6-11.
[17] 高清竹, 李玉娥, 林而达, 等. 藏北地区草地退化的时空分布特征. 地理学报, 2005, 60(6): 965-973.
[18] 李 强, 杨俊诚, 张加琼, 等. 植物根系抗侵蚀指标及模型研究进展. 农业资源与环境学报, 2020, 37(1): 17-23.
[19] 孙宝洋, 吴志广, 李占斌, 等. 冻融对土壤分离能力及侵蚀阻力的影响. 农业工程学报, 2020, 36(11): 57-65.
[20] 李光莹, 虎啸天, 李希来, 等. 黄河源玛沁地区高寒草地植物固土护坡的力学效应. 山地学报, 2014, 32(5): 550-560.
[21] WANG L, SHI Z H. Size Selectivity of Eroded Sediment Associated with Soil Texture on Steep Slopes. Soil Science Society of America Journal, 2015, 79(3): 917-929.
[22] AN S, MENTLER A, MAYER H, et al. Soil Aggregation, Aggregate Stability, Organic Carbon and Nitrogen in Different Soil Aggregate Fractions under Forest and Shrub Vegetation on the Loess Plateau, China. CATENA, 2010, 81(3): 226-233.
[23] 肖 海, 刘 刚, 刘普灵. 集中流作用下黄土坡面剥蚀率对侵蚀动力学参数的响应. 农业工程学报, 2016, 32(17): 106-111.
[24] 申 楠, 王占礼, 陈 浩. 黄土坡面细沟水流分离能力. 山地学报, 2015, 33(2): 191-198.
[25] 郭继成,张科利,董建志,等. 西南地区黄壤坡面径流冲刷过程研究. 土壤学报,2013,50(6):1102-1108.
基金
国家自然科学基金项目(42107352,U2240226);raybet体育在线
中央级公益性科研院所基本科研业务费项目(CKSF2021485/TB,CKSF2019292/TB)