青海湖沙柳河流域水汽再循环研究

王志刚, 曹生奎, 曹广超, 侯瑶芳

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (3) : 37-45.

PDF(3190 KB)
PDF(3190 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (3) : 37-45. DOI: 10.11988/ckyyb.20211141
水资源

青海湖沙柳河流域水汽再循环研究

  • 王志刚1,2,3, 曹生奎1,2,3, 曹广超1,3, 侯瑶芳1,2,3
作者信息 +

Recirculation of Water Vapor in Shaliu River Basin of Qinghai Lake

  • WANG Zhi-gang1,2,3, CAO Sheng-kui1,2,3, CAO Guang-chao1,3, HOU Yao-fang1,2,3
Author information +
文章历史 +

摘要

陆地蒸发水汽是水循环过程的关键环节,深刻影响内陆河流域的水资源和生态环境,研究水汽再循环比例对区域水资源调配和管理具有重要意义。选取2019年5—9月份青海湖沙柳河流域13个采样点的月降水同位素数据,利用基于稳定同位素的水汽再循环模型,分析了再循环水汽对流域降水的贡献比例,以期为该流域水循环研究提供基础数据和理论参考。分析结果表明:①2019年5—9月份青海湖沙柳河流域逐月平均水汽再循环比例分别为11.01%、12.64%、8.13%、9.48%和14.97%,平均为11.25%;其季节变化特征明显,5月份流域水汽再循环比例开始增加然后降低,到9月份达到最大值,呈先增加后降低再增加特征。②各月水汽再循环比例空间分布状况存在差异性。③6—8月份流域河源地区水汽再循环比例均大于河口地区,从河口地区到河源地区呈现明显的增加趋势,水汽再循环比例最高值均位于流域的西北部山区。④5—9月份水汽再循环比例主要受500 m高度东向水汽来源和海拔影响。沙柳河流域水汽再循环是该流域重要的降水来源之一,关注流域水汽再循环有利于流域的水资源管理和有效利用。

Abstract

As a key link in the water cycle process, land evaporative water vapor profoundly affects the water resources and ecological environment of inland river basins. The study of water vapor recirculation ratio is of great significance to the deployment and management of regional water resources. In the objective of providing basic data and theoretical references for the water cycle study in the basin, we looked into the contribution of recirculated water vapor to precipitation by using the water vapor recirculation model based on the stable isotope method. We selected the monthly precipitation isotope data of 13 sampling points in the Shaliu river basin of Qinghai Lake from May to September 2019 for the model. From May to September 2019, the monthly average water vapor recirculation ratio in the Shaliu river basin of Qinghai Lake was 11.01%, 12.64%, 8.13%, 9.48% and 14.97%, respectively, averaging 11.25%. The recirculation ratio presents obvious seasonal changes: in May, the ratio begins to increase, and then reduces, and increase again, reaching the maximum in September. In spatial scale, the monthly water vapor recirculation ratio differs: from June to August, the recirculation ratio in the river source area is greater than that in the estuary area, displaying a clear increasing trend from the estuary area to the river source area. The northwest mountainous area of the basin sees the maximum recirculation ratio. The ratio from May to September is mainly affected by altitude and the eastward water vapor source at a height of 500 m. Water vapor recirculation is an important source of precipitation in the Shaliu river basin. Attentions to the water vapor recirculation will be conducive to the management and effective use of water resources in the basin.

关键词

水汽再循环 / 稳定同位素 / 大气降水 / 水资源调配 / 青海湖 / 沙柳河流域

Key words

water vapor recirculation / stable isotope / precipitation / water resources allocation / Qinghai Lake / Shaliu river basin

引用本文

导出引用
王志刚, 曹生奎, 曹广超, 侯瑶芳. 青海湖沙柳河流域水汽再循环研究[J]. raybet体育在线 院报. 2023, 40(3): 37-45 https://doi.org/10.11988/ckyyb.20211141
WANG Zhi-gang, CAO Sheng-kui, CAO Guang-chao, HOU Yao-fang. Recirculation of Water Vapor in Shaliu River Basin of Qinghai Lake[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(3): 37-45 https://doi.org/10.11988/ckyyb.20211141
中图分类号: P426.612   

参考文献

[1] ZHAO L, LIU X, WANG N, et al. Contribution of Recycled Moisture to Local Precipitation in the Inland Heihe River Basin[J]. Agricultural and Forest Meteorology, 2019, 271: 316-335.
[2] ZEMP D C,SCHLEUSSNER C-F,BARBOSA H M J,et al. On the Importance of Cascading Moisture Recycling in South America[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13337-13359.
[3] HUA L, ZHONG L, KE Z. Precipitation Recycling and Soil-Precipitation Interaction across the Arid and Semi-Arid Regions of China[J]. International Journal of Climatology, 2016, 36(11): 3708-3722.
[4] 孔彦龙.基于氘盈余的内陆干旱区水汽再循环研究[D].北京:中国科学院大学,2013:72-91.
[5] 汤秋鸿,刘星才,周园园,等. “亚洲水塔”变化对下游水资源的连锁效应[J].中国科学院院刊,2019,34(11): 1306-1312.
[6] 姚俊强,杨 青,伍立坤,等.天山地区水汽再循环量化研究[J].沙漠与绿洲气象,2016,10(5):37-43.
[7] 姚檀栋,邬光剑,徐柏青,等.“亚洲水塔”变化与影响[J].中国科学院院刊,2019,34(11):1203-1209.
[8] 陈德亮,徐柏青,姚檀栋,等.青藏高原环境变化科学评估:过去、现在与未来[J].科学通报,2015,60(32): 3023-3035.
[9] CHEN B, XU X D, YANG S, et al. On the Origin and Destination of Atmospheric Moisture and Air Mass over the Tibetan Plateau[J].Theoretical and Applied Climatology, 2012, 110(3): 423-435.
[10] 汤秋鸿,兰 措,苏凤阁,等.青藏高原河川径流变化及其影响研究进展[J].科学通报,2019,64(27): 2807-2821.
[11] CURIO J, MAUSSION F, SCHERER D. A 12-Year High-Resolution Climatology of Atmospheric Water Transport over the Tibetan Plateau[J]. Earth System Dynamics, 2015, 6(1): 109-124.
[12] ZHANG C, TANG Q, CHEN D. Recent Changes in the Moisture Source of Precipitation over the Tibetan Plateau[J]. Journal of Climate, 2017, 30(5): 1807-1819.
[13] ALA-AHO P, SOULSBY C, POKROVSKY O S, et al. Using Stable Isotopes to Assess Surface Water Source Dynamics and Hydrological Connectivity in a High-Latitude Wetland and Permafrost Influenced Landscape[J]. Journal of Hydrology, 2018, 556: 279-293.
[14] 刘 芳,曹广超,曹生奎,等.祁连山南坡主要流域河水稳定同位素特征及补给关系[J].中国沙漠,2020,40(6):151-161.
[15] SUN C, CHEN W, CHEN Y, et al. Stable Isotopes of Atmospheric Precipitation and Its Environmental Drivers in the Eastern Chinese Loess Plateau, China[J]. Journal of Hydrology, 2020, 581: 124404.
[16] ZHU G, GUO H, QIN D, et al. Contribution of Recycled Moisture to Precipitation in the Monsoon Marginal Zone: Estimate Based on Stable Isotope Data[J]. Journal of Hydrology, 2019, 569: 423-435.
[17] WANG S, ZHANG M, CHE Y, et al. Contribution of Recycled Moisture to Precipitation in Oases of Arid Central Asia: A Stable Isotope Approach[J]. Water Resources Research, 2016, 52(4): 3246-3257.
[18] 姚俊强,杨 青,伍立坤,等.天山地区水汽再循环量化研究[J].沙漠与绿洲气象,2016,10(5):37-43.
[19] 吴华武,李小雁,赵国琴,等.青海湖流域降水和河水中δ18O和δD变化特征[J].自然资源学报,2014,29(9):1552-1564.
[20] WU H, LI X Y, HE B, et al. Characterizing the Qinghai Lake Watershed Using Oxygen-18 and Deuterium Stable Isotopes[J]. Journal of Great Lakes Research, 2017, 43(3): 33-42.
[21] CUI B L, LI X Y. Stable Isotopes Reveal Sources of Precipitation in the Qinghai Lake Basin of the Northeastern Tibetan Plateau[J]. Science of the Total Environment, 2015, 527/528: 26-37.
[22] CUO L,ZHANG Y,ZHU F,et al. Characteristics and Changes of Streamflow on the Tibetan Plateau: a Review[J]. Journal of Hydrology: Regional Studies, 2014, 2: 49-68.
[23] 刚察县编篡委员会. 刚察县志[M].西安:陕西人民出版社, 1998.
[24] 杨羽帆,曹生奎,曹广超,等.青海湖沙柳河流域浅层地下水不同时期补给特征[J].干旱区地理,2020,43(3):633-643.
[25] 乔 凯,郭 伟.青海湖流域植被的净初级生产力估算[J].水土保持通报,2016,36(6):204-209.
[26] 杨羽帆,曹生奎,冯 起,等.青海湖沙柳河流域浅层地下水氢氧稳定同位素分布特征[J].中国沙漠,2019,39(5):45-53.
[27] 兰 垚,曹生奎,曹广超,等.青海湖流域植被碳利用效率时空动态研究[J].生态科学,2020,39(4):156-166.
[28] 李永格,李宗省.托来河流域不同海拔降水稳定同位素的环境意义[J].环境科学,2018,39(6):159-170.
[29] 曾钰婷,张 宇,周 可,等.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象,2020,39(3):467-476.
[30] DRAXLER R. An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition[J]. Australian Meteprological Magazine, 1998, 47: 295-308.
[31] 王志刚,曹生奎,曹广超,等.气候异常年份青海湖沙柳河流域降水水汽来源对比研究[J].高原气象,2022,41(5):1153-1160.
[32] 曹 乐,申建梅,聂振龙,等.巴丹吉林沙漠降水稳定同位素特征与水汽再循环[J].地球科学,2021,46(8):2973-2983.
[33] KONG Y L, PANG Z H, FROEHLICH K.Quantifying Recycled Moisture Fraction in Precipitation of an Arid Region Using Deuterium Excess[J]. Tellus B: Chemical and Physical Meteorology, DOI:10.3402/tellusb.v65io.19251.
[34] LI Z, FENG Q, WANG Q J, et al. Contributions of Local Terrestrial Evaporation and Transpiration to Precipitation Using δ18 O and D-Excess as a Proxy in Shiyang Inland River Basin in China[J]. Global and Planetary Change, 2016, 146: 140-151.
[35] AN W,HOU S,ZHANG Q,et al. Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced from Ice Core Deuterium Excess Records[J].Journal of Geophysical Research:Atmospheres,2017,122(23):1-16.
[36] PENG H, MAYER B, NORMAN A-L, et al. Modelling of Hydrogen and Oxygen Isotope Compositions for Local Precipitation[J]. Tellus B: Chemical and Physical Meteorology, 2005, 57(4): 273-282.
[37] GAT J R, BOWSER C J, KENDALL C. The Contribution of Evaporation from the Great Lakes to the Continental Atmosphere: Estimate Based on Stable Isotope Data[J]. Geophysical Research Letters, 1994, 21(7): 557-560.
[38] 武茜茜,陈粉丽,朱国锋,等.基于LMDZ模型的西南地区水汽来源及水汽再循环率的分析[J].地球与环境,2021,49(4):400-408.
[39] 余秀秀,张明军,王圣杰,等.基于LMDZ模型的西北干旱区水汽再循环率分析[J].干旱区研究,2019,36(1):29-43.
[40] FROEHLICH K, KRALIK M, PAPESCH W, et al. Deuterium Excess in Precipitation of Alpine Regions-Moisture Recycling[J]. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70.
[41] STEWART M K. Stable Isotope Fractionation Due to Evaporation and Isotopic Exchange of Falling Waterdrops: Applications to Atmospheric Processes and Evaporation of Lakes[J]. Journal of Geophysical Research, 1975, 80(9): 1133-1146.
[42] KINZER G D, GUNN R. The Evaporation, Temperature and Thermal Relaxation-Time of Freely Falling Waterdrops[J]. Journal of Meteorology, 1951, 8(2): 71-83.
[43] 万 龙,马 芹,张建军,等.黄土高原降雨量空间插值精度比较:KRIGING与TPS法[J].中国水土保持科学,2011,9(3):79-87.
[44] 杨羽帆.基于氢氧稳定同位素技术的青海湖沙柳河流域降水径流过程研究[D].西宁:青海师范大学,2019.
[45] YAO J, CHEN Y, ZHAO Y, et al. Climatic and Associated Atmospheric Water Cycle Changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585: 124823.
[46] LI R, WANG C, WU D. Changes in Precipitation Recycling over Arid Regions in the Northern Hemisphere[J]. Theoretical and Applied Climatology, 2018, 131(1): 489-502.
[47] 苏 涛,卢震宇,周 杰,等.全球水汽再循环率的空间分布及其季节变化特征[J].物理学报, 2014, 63(9):457-466.
[48] LI Z, GUI J, WANG X, et al. Water Resources in Inland Regions of Central Asia: Evidence from Stable Isotope Tracing[J]. Journal of Hydrology, 2019, 570: 1-16.
[49] 李宗省,冯 起,李宗杰,等.祁连山北坡稳定同位素生态水文学研究的初步进展与成果应用[J].冰川冻土,2019,41(5):1044-1052.

基金

青海省自然科学基金项目(2018-ZJ-905)

PDF(3190 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map