基于水平集方法的原状土三维水气两相渗流特性数值研究

蔡沛辰, 阙云

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (9) : 90-95.

PDF(7752 KB)
PDF(7752 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (9) : 90-95. DOI: 10.11988/ckyyb.20210436
岩土工程

基于水平集方法的原状土三维水气两相渗流特性数值研究

  • 蔡沛辰, 阙云
作者信息 +

Numerical Study on 3D Water-Air Two-phase Seepage Characteristics of Undisturbed Soil Based on Level Set Method

  • CAI Pei-chen, QUE Yun
Author information +
文章历史 +

摘要

为揭示土体中水气两相动态渗流机理,基于计算机断层扫描(CT)与AVIZO-COMSOL交互对接技术,通过水平集(Level Set)方法来研究代表性体积单元(REV)尺度原状花岗岩残积土三维水气两相渗流特性。结果表明:孔隙残余气主要呈块状分布于孔隙边、死角和孔喉突变部位;REV模型孔隙中存在少数主渗流孔道,其普遍有着孔道宽且笔直的特征;两相渗流速度受孔道迂回程度控制,且存在明显的“优势通道”,其中主渗流通道平均流速比模型整体高47.26%;驱替阻力最大出现在孔隙壁面处,且孔道越窄,阻力越大。该研究成果可为进一步认识原状土孔隙渗流规律提供研究方法及理论基础。

Abstract

The 3D water-air two-phase seepage characteristics of undisturbed granite residual soil at REV (representative elementary volume) scale are examined by using the Level Set method based on computer tomography (CT) and AVIZO-COMSOL interactive docking technology. Results reveal that the residual air in pores mainly distributes in blocks on the pore edges, dead corners and abrupt changes of pore throats. A few main seepage channels, generally wide and straight, exist in the pores of the REV model. The two-phase seepage velocity is controlled by the tortuosity of the pores, yet with obvious advantage channels. The average flow velocity of the main seepage channel is 47.26% higher than the model as a whole. The maximum displacement resistance appears at the pore wall; the narrower the pore, the greater the resistance. The research finding offers an approach and a theoretical basis for further understanding the pore seepage law in undisturbed soil.

关键词

原状土 / 渗流特性 / 水平集 / 代表性体积单元 / CT扫描 / 两相流

Key words

undisturbed soil / seepage characteristics / Level Set / representative elementary volume / CT scanning / two-phase flow

引用本文

导出引用
蔡沛辰, 阙云. 基于水平集方法的原状土三维水气两相渗流特性数值研究[J]. raybet体育在线 院报. 2022, 39(9): 90-95 https://doi.org/10.11988/ckyyb.20210436
CAI Pei-chen, QUE Yun. Numerical Study on 3D Water-Air Two-phase Seepage Characteristics of Undisturbed Soil Based on Level Set Method[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(9): 90-95 https://doi.org/10.11988/ckyyb.20210436
中图分类号: TU43   

参考文献

[1] 蔡沛辰,阙 云,李 显.非饱和花岗岩残积土水-气两相驱替过程数值模拟[J].水文地质工程地质,2021,48(6):54-63.
[2] 王 伟,赵永攀,江绍静,等. 鄂尔多斯盆地特低渗油藏CO2非混相驱实验研究[J].西安石油大学学报(自然科学版), 2017,32(6):87-92.
[3] 吕伟峰,冷振鹏,张祖波,等. 应用CT扫描技术研究低渗透岩心水驱油机理[J]. 油气地质与采收率, 2013, 20(2): 87-90.
[4] 罗书靖, 徐玲君, 薛 阳. X型宽尾墩水气两相流场的数值模拟[J]. raybet体育在线 院报, 2011, 28(5):23-26.
[5] 魏祥祥,冯其红,张先敏,等.基于VOF方法的水驱油藏孔隙尺度剩余油分布状态研究[J].计算物理,2021,38(5):373-584.
[6] 冯其红,赵蕴昌,王 森,等.基于相场方法的孔隙尺度油水两相流体流动模拟[J].计算物理,2020,37(4):439-447.
[7] ZAKIROV T R, KHRAMCHENKOV M G, GALEEV A A. Lattice Boltzmann Simulations of the Interface Dynamics During Two-Phase Flow in Porous Media[J]. Lobachevskii Journal of Mathematics, 2021, 42(1): 237-256.
[8] 张一夫, 梁 冰, 张遵国. 相间力对微孔通道内两相驱替渗流影响规律的LBM研究[J].煤矿安全, 2019, 50(6):1-5,10.
[9] 王 鑫, 杨斌鑫. 耦合格子 Boltzmann 的聚合物结晶相场方法[J]. 化工学报, 2018, 69(增刊2):193-199.
[10] SONG R, WANG Y, LIU J,et al. Comparative Analysis on Pore-scale Permeability Prediction on Micro-CT Images of Rock Using Numerical and Empirical Approaches[J]. Energy Science & Engineering, 2019, 7(6): 1-13.
[11] OSHER S, SETHIAN J A. Fronts Propagating with Curvature-dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations [J]. Journal of Computational Physics, 1988, 79(1): 12-49.
[12] 赵玉龙,周厚杰,李洪玺,等.基于水平集方法的低渗砂岩数字岩心气水两相渗流模拟[J].计算物理,2021,38(5):585-594.
[13] NGO L C, CHOI H G. A Multi-level Adaptive Mesh Refinement for an Integrated Finite Element/Level Set Formulation to Simulate Multiphase Flows with Surface Tension[J]. Computers & Mathematics with Applications, 2020, 79(4): 908-933.
[14] LIU J J, SONG R. Investigation ofWater and CO2 Flooding Using Pore-scale Reconstructed Model Based on Micro-CT Images of Berea Sandstone Core [J]. Progress in Computational Fluid Dynamics, 2015, 15(5): 317-326.
[15] 蔡沛辰,阙 云,蒋振梁,等. 基于CT扫描的花岗岩残积土3D大孔隙定量表征及流动模拟[J].中国科学:技术科学,2022,52(7):1065-1082.
[16] 阙 云, 蔡沛辰, 李 显. 花岗岩残积土大孔隙结构定量表征[J]. raybet体育在线 院,2022, 39(2): 82-88,101.
[17] 李 翔. 岩土材料CT试验后处理方法研究[D]. 武汉: raybet体育在线 , 2012.
[18] 刘向君,熊 健,梁利喜,等.基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J].地球物理学进展, 2017, 32(3): 1019-1028.
[19] KOESTEL J, LARSBO M, JARVIS N. Scale and REV Analyses for Porosity and Pore Connectivity Measures in Undisturbed Soil[J]. Geoderma, 2020, 366: 114206.
[20] NI X M,MIAO J,LÜ R S,et al. Quantitative 3D Spatial Characterization and Flow Simulation of Coal Macropores Based on μCT Technology[J]. Fuel,2017,200:199-207.
[21] 方辉煌,桑树勋,刘世奇,等.基于微米焦点CT技术的煤岩数字岩石物理分析方法:以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探, 2018, 46(5):167-174,181.
[22] HOUSTON A H, OTTEN W, FALCONER R, et al. Quantification of the Pore Size Distribution of Soils: Assessment of Existing Software Using Tomographic and Synthetic 3D Images [J]. Geoderma, 2017, 299:73-82.
[23] 蔡沛辰,阙 云,李 显. COMSOL与AVIZO联合仿真土体三维细观渗流特性[J].福州大学学报(自然科学版),2021,49(6):856-862.
[24] GUNDE A C, BERA B, MITRA S K. Investigation of Water and CO2 (Carbon Dioxide) Flooding Using Micro-CT (Micro-computed Tomography) Images of Berea Sandstone Core Using Finite Element Simulations [J]. Energy, 2010, 35(12): 5209-5216.
[25] 杨永飞,尹 振,姚 军,等.多孔介质中水气交替注入微观渗流模拟[J].地球科学(中国地质大学学报), 2013, 38(4):853-858,886.
[26] 张石峰,张冀生,于 炯.两相流模型数值解[J].新疆工学院学报,1996,17(1):45-51.

基金

国家自然科学基金项目(41772297)

PDF(7752 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map