三峡坝前水位过程线特征参数的标定与统计特性

何金文, 孙钧键, 程军

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (5) : 54-62.

PDF(1559 KB)
PDF(1559 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (5) : 54-62. DOI: 10.11988/ckyyb.20210129
工程安全与灾害防治

三峡坝前水位过程线特征参数的标定与统计特性

  • 何金文, 孙钧键, 程军
作者信息 +

Calibration and Statistics of Characteristic Parameters of Water Level Process lines in Front of Three Gorges Dam

  • HE Jin-wen, SUN Jun-jian, CHENG Jun
Author information +
文章历史 +

摘要

三峡水位周期性振荡是影响库区滑坡变形及稳定性的重要随机变量。通过对2010—2020年三峡坝前水位过程线进行标定,获取水位过程线特征参数的边缘分布类型、分布参数和相关性。运用9条直线段拟合水位过程线,获取库水消落期与回升期的持续时间和变化速率、汛限期前后平台持时、洪峰爬升和下降时长、洪峰水位等14个特征参数。根据赤池信息准则(Akaike Information Criterion,AIC)识别特征参数的最优分布类型,并利用Bootstrap方法模拟统计不确定性。结果表明:①特征参数均值线克服了水位均值线平均时的削峰填谷现象,可作为库区涉水滑坡变形和稳定预测的的典型水位过程线。②在库水消落期的缓降和陡降、回升期的陡升和缓升4个阶段内,持续时间分别服从威布尔、极值Ⅰ型、对数正态、威布尔分布,均值分别为87.00、47.45、22.18、32.27 d;库水位变化速率分别服从极值Ⅰ型、威布尔、极值Ⅰ型、极值Ⅰ型分布,均值分别为14.53、36.75、74.33、37.88 cm/d;持时和库水位变化速率的Pearson相关系数分别为-0.67、-0.78、-0.85、-0.67。③汛期洪峰水位服从极值Ⅰ型分布,缓降持时和速度之间相关系数均值的变异性较大。研究成果可为库区涉水滑坡的风险分析提供水位信息相关统计特性。

Abstract

Periodic change of water level in Three Gorges Reservoir is a crucial random variable that affects the deformation and stability of bank slope in the reservoir area. The marginal distribution type, distribution parameters and correlation coefficient of characteristic parameters are obtained by calibrating the water level process lines(WPL) of Three Gorges ranged from 2010 to 2020. Firstly, WPL is fitted with nine straight lines and fourteen parameters inclusive of the duration and rising or falling speed in rising and falling period, the duration of two platforms before and after the main flood period, the climbing and falling durations of flood peak, and the peak water level. AIC (Akaike Information Criterion, AIC) method is used to identify the optimum distribution of characteristic parameters, and statistical uncertainty is simulated by using Bootstrap method. Results show that the WPL formed by average characteristic parameters calibrated from 11-year WPL can effectively avoid the peak elimination and valley filling, and can be taken as typical WPL for deformation and stability prediction of landslides in the reservoir area. The durations of the slow-descent stage and steep-descent stage of decline period and the steep-rising stage and slow-rising stage of the rising period obey Weibull distribution, the extreme value I-type distribution, the lognormal distribution, and the Weibull distribution, respectively, with the mean values being respectively 87.00, 47.45, 22.18, and 32.27 days. The falling or rising speeds of reservoir water in the four stages obey extreme value I-type distribution, Weibull distribution, extreme value I-type distribution, and extreme value I-type distribution, respectively, with the mean values being 14.53 cm/d, 36.75 cm/d, 74.33 cm/d, and 37.88 cm/d, respectively. The Pearson coefficient of correlation between duration and reservoir water level change rate in the four stages are -0.67, -0.78, -0.85, and -0.67. The flood peak level in flood season obeys the extreme value I-type distribution and the mean coefficient of correlation between slow-descent duration and the speed varies largely. The research findings offer random statistical parameters of WPL for risk analysis of landslides in the Three Gorges reservoir area.

关键词

水位过程线 / 特征参数 / 统计特性 / 分布类型 / 相关性 / 库区滑坡 / 三峡

Key words

water level process line / characteristic parameters / statistical characteristic / distribution type / correlation / landslide in reservoir area / Three Gorges

引用本文

导出引用
何金文, 孙钧键, 程军. 三峡坝前水位过程线特征参数的标定与统计特性[J]. raybet体育在线 院报. 2022, 39(5): 54-62 https://doi.org/10.11988/ckyyb.20210129
HE Jin-wen, SUN Jun-jian, CHENG Jun. Calibration and Statistics of Characteristic Parameters of Water Level Process lines in Front of Three Gorges Dam[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(5): 54-62 https://doi.org/10.11988/ckyyb.20210129
中图分类号: TV697.1    P642   

参考文献

[1] 李 沛,黄生志,李大鹏,等.三峡水库防洪作用与鄱阳湖流域洪灾分析[J].西安理工大学学报, 2020, 36(4): 486-493,501.
[2] 卢书强,易庆林,易 武,等.库水下降作用下滑坡动态变形机理分析:以三峡库区白水河滑坡为例[J].工程地质学报,2014, 22(5): 869-875.
[3] LUO S L,HUANG D.Deformation Characteristics and Reactivation Mechanisms of the Outang Ancient Landslide in the Three Gorges Reservoir,China[J].Bulletin of Engineering Geology and the Environment,2020,79:3943-3958.
[4] 尚 敏,廖 芬,马 锐,等.白家包滑坡变形与库水位、降雨相关性定量化分析研究[J].工程地质学报, 2021,29(3):742-750.
[5] 张富灵,邓茂林,周 剑,等.长江三峡库区谭家湾滑坡基本变形特征及机理分析[J].raybet体育在线 院报,2021,38(1): 78-83.
[6] 卢书强,易庆林,易 武,等.三峡库区树坪滑坡变形失稳机制分析[J].岩土力学, 2014, 35(4): 1123-1130,1202.
[7] 胡亚波,王丽艳.三峡水库调度对库岸斜坡体内渗透压力与斜坡稳定性影响研究[J].岩石力学与工程学报,2005, 24(16):2994-2997.
[8] 熊 珅,易 武,王 力,等.三峡库区八字门滑坡变形破坏机理分析[J].中国地质灾害与防治学报,2019,30(5):9-18.
[9] 吴世伟,张思俊,余 强.坝上游水位变化规律及统计量[J]. 华东水利学院学报,1984(4): 66-74.
[10] 丁 晶,邓育仁,付 军.大中型水库坝前年最高水位统计变化特性分析[J]. 水文,1998(5):22-25,49.
[11] 葛 慧,黄振平,顾巍巍,等.基于PPCC检验法的坝前年最高水位统计特性分析[J].水电能源科学,2008, 26(2): 48-50.
[12] 李志远. 基于来沙量减少的三峡水库运行水位的思考[J]. raybet体育在线 院报,2012,29(10):11-15.
[13] 胡春宏,方春明,许全喜.论三峡水库“蓄清排浑”运用方式及其优化[J].水利学报,2019,50(1):2-11.
[14] 严 萌,纪道斌,龙良红,等.基于小波分析的三峡水库调度水位变化特性[J].武汉大学学报(工学版),2017,50(2): 200-206.
[15] 孙思瑞,谢 平,陈柯兵,等.三峡水库蓄水期不同调度方案对洞庭湖出口水位的影响[J].长江流域资源与环境,2018,27(8):1819-1826.
[16] 谭淋耘,黄润秋,裴向军.库水位下降诱发的特大型顺层岩质滑坡变形特性与诱发机制[J].岩石力学与工程学报,2021, 40(2):302-314.
[17] AKAIKE H. A New Look at the Statistical Model Identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
[18] 刑 婕,唐小松,李典庆,等. 水利水电工程岩基抗剪强度参数二维分布模型构造的Copula方法[J].岩土力学,2016,37(3):783-792.
[19] LI D Q, TANG X S, PHOON K K. Bootstrap Method for Characterizing the Effect of Uncertainty in Shear Strength Parameters on Slope Reliability[J]. Reliability Engineering and System Safety,2015,140:99-106.
[20] 唐小松,李典庆,曹子君,等.有限数据条件下边坡可靠度分析的Bootstrap方法[J].岩土力学,2016,37(3):893-901,911.

基金

国家自然科学基金项目(51909137);raybet体育在线 开放研究基金资助项目(CKWV2019755/KY)

PDF(1559 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map