基于ERA-Interim再分析资料,以滇中引水工程主要受水区为研究对象,计算了受水区上空21 a水汽输送通量及水汽输送通量散度,并对其水汽输送、水汽辐合与水汽辐散等特征进行分析,研究其水汽输送时空变化特征。结果表明:研究区年平均水汽输送由西北至东南方向逐渐增加,并以纬向输送为主;水汽来源随季节移动,研究区夏季受西南风控制,水汽输送强度明显小于其他3个季节;5—7月份,研究区水汽输送强度逐渐衰减,7月份,研究区850 hPa气压层南部地区存在水汽辐合中心,450 hPa气压层西南部为水汽辐散带,在西南部易于形成降水。
Abstract
According to the ERA-Interim data, the 21-year water vapor transport flux and divergence over the main water-receiving area of the water diversion project in central Yunnan Province were calculated. The spatial-temporal characteristics of water vapor transport, convergence and divergence in the studied area were also analyzed. Results demonstrate that the annual average water vapor transport in the studied area gradually increases from the northwest to the southeast, and is dominated by latitudinal transport. The source of water vapor moves with the seasons and is controlled by southwest wind in summer. The intensity of water vapor transport in the studied area in summer is significantly lower than that in the other three seasons. From May to July, the intensity of water vapor transport shows a gradual decline. In July, a water vapor convergence center emerges in the south of the studied area on the 850 hPa barosphere and a water vapor divergent zone in the southwest on the 450 hPa barosphere, beneficial for the formation of precipitation in the southwest.
关键词
水汽输送 /
水汽输送通量 /
水汽辐合 /
水汽辐散 /
滇中引水工程
Key words
water vapor transport /
water vapor transport flux /
water vapor convergence /
water vapor divergence /
water diversion project in central Yunnan Province
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陆桂华,何 海.全球水循环研究进展[J].水科学进展,2006,17(3):419-424.
[2] 张 博,周 伟.1969—2018年青海省生长季降水时空变化特征[J].raybet体育在线
院报,2021,38(1):20-26.
[3] 夏 军,刘春蓁,任国玉.气候变化对我国水资源影响研究面临的机遇与挑战[J].地球科学进展,2011(1):1-12.
[4] 刘国纬.水文循环的大气过程[M].北京:科学出版社,1997.
[5] MALIK K M,TAYLOR P A.Characteristics of Moisture Flux Convergence over the Mackenzie River Basin for Water Years 1991-2008[J].Atmosphere-Ocean,2011, 49(3):279-288.
[6] JHOANA A, ARIAS P A, VIEIRA S C, et al. Influence of Longer Dry Seasons in the Southern Amazon on Patterns of Water Vapor Transport over Northern South America and the Caribbean[J]. Climate Dynamics, 2018,52(1): 1-19.
[7] 强安丰,魏加华,解宏伟.三江源区大气水汽含量时空特征及其转化变化[J].水利水电快报,2019,40(5):5.
[8] 林厚博,游庆龙,焦 洋,等.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象,2016,35(2):309-317.
[9] 张新主. 西南地区水汽输送特征分析[D].长沙:湖南师范大学,2011.
[10] 赵瑞霞,吴国雄.黄河流域中上游水分收支以及再分析资料可用性分析[J].自然科学进展,2006(3):316-324.
[11] BAO Xing-hua, ZHANG Fu-qing. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau[J]. Journal of Climate, 2013, 26(1): 206-214.
[12] 杨丹丽,王 杰,曹 言.再分析资料ERA Interim在云南省的精度评估[J].人民珠江, 2018, 39(7): 51-56.
[13] 陈 艳,丁一汇,肖子牛,等.水汽输送对云南夏季风爆发及初夏降水异常的影响[J].大气科学, 2006(1): 25-37.
[14] 段 旭,陶 云,许美玲,等.西风带南支槽对云南天气的影响[J].高原气象, 2012, 31(4): 1059-1065.
[15] 赵文宁,苗春生,王坚红,等. 近53年云南东部春季旱涝及环流距平波列影响研究[C]//创新驱动发展 提高气象灾害防御能力-S5应对气候变化、低碳发展与生态文明建设. 北京:中国气象学会,2013: 13.
[16] 王同美,吴国雄,宇婧婧.春季青藏高原加热异常对亚洲热带环流和季风爆发的影响[J].热带气象学报, 2009, 25(增刊1): 92-102.
[17] 洪芳玲,李丽平,王盘兴,等. 夏季南亚高压和印度低压环流指数及其与大气热源的关系[J].高原气象, 2012, 31(5): 1234-1242.
[18] 任晓华,何士华,马晓青,等. 1958—2017年滇中引水工程受水区降水时空变化[J].raybet体育在线
院报, 2021,38(8):33-40.
基金
国家自然科学基金项目(52069009);云南省教育厅科学研究基金项目(2020J0056)