风浪流荷载下基于AQWA的海上Spar型浮式基础稳定性分析

徐旭, 丁刚, 姚文娟

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (5) : 145-152.

PDF(4963 KB)
PDF(4963 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (5) : 145-152. DOI: 10.11988/ckyyb.20210080
水工结构与材料

风浪流荷载下基于AQWA的海上Spar型浮式基础稳定性分析

  • 徐旭, 丁刚, 姚文娟
作者信息 +

Stability Analysis of Offshore Spar Floating Foundation Platform under Wind Wave Current Load Based on AQWA

  • XU Xu, DING Gang, YAO Wen-juan
Author information +
文章历史 +

摘要

为了解决现阶段可再生能源利用的问题,实现深海风能的有效利用,针对设计出的OC3-Hywind 5MW Spar型浮式平台基础部分在风浪流荷载下的稳定性问题进行研究。利用ANSYS中的水动力模块(AQWA)分别对结构进行频域以及时域耦合运动响应仿真模拟,比较分析了不同工况下浮式结构各个自由度下的运动响应值,以及配重块在系泊不同位置处对结构运动响应值及系泊力的影响情况。结果表明:在不同工况作用下的浮式结构在纵摇自由度方向上的运动响应极值主要受风荷载影响,随着风速增大,响应极值也随之增大,在其他自由度上的响应极值受风、浪荷载影响较小;改变配重块在系泊缆上的悬挂位置对浮式基础在纵摇和首摇自由度方向的运动有着显著影响,并且随着配重块距离锚固点越近,响应值越大,越不利于浮式基础的稳定;未悬挂配重块的系泊力高于悬挂了配重块的系泊力,随着配重块悬挂位置离锚固点越远,系泊力越小,越能保证浮式基础在恶劣海况条件下的稳定性。

Abstract

In view of the currently low utilization rate of renewable energy and to effectively use deep-sea wind energy, we probed into the stability of the foundation part of the designed OC3-Hywind 5MW Spar floating platform under wind, wave, and current loads. By simulating the coupled motion response of the structure in the frequency domain and time domain respectively using hydrodynamic module AQWA in ANSYS, we compared and analyzed the motion response extreme values of the floating foundation under various degrees of freedom in different working conditions, as well as the influence of counterweights at different positions of the mooring on the response value of structure motion and mooring tension. Results revealed that the extreme value of the motion response of the floating foundation platform in the direction of the pitch degree of freedom in different cases was mainly affected by wind load; as wind speed increased, the extreme value of the response also increased. The extreme value of response in other degrees of freedom was less affected by wind and wave loads. Changing the position of counterweights on the mooring line had a significant impact on the movement of the floating foundation platform in the pitch and yaw degrees of freedom; the closer the counterweight was to the anchoring point, the greater the response value was, which is not conducive to the stability of the foundation platform. The tension of the mooring system in the absence of counterweight was higher than that in the presence of counterweight; as the counterweight was farther from the anchoring point, the mooring force reduced, which ensured the survivability of the floating foundation platform under severe sea conditions.

关键词

浮式基础 / 稳定性分析 / 风浪流荷载 / AQWA / 动力响应 / 系泊力

Key words

floating foundation platform / stability analysis / wind wave current load / AQWA / motion response / mooring force

引用本文

导出引用
徐旭, 丁刚, 姚文娟. 风浪流荷载下基于AQWA的海上Spar型浮式基础稳定性分析[J]. raybet体育在线 院报. 2022, 39(5): 145-152 https://doi.org/10.11988/ckyyb.20210080
XU Xu, DING Gang, YAO Wen-juan. Stability Analysis of Offshore Spar Floating Foundation Platform under Wind Wave Current Load Based on AQWA[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(5): 145-152 https://doi.org/10.11988/ckyyb.20210080
中图分类号: TM614   

参考文献

[1] HUANG Yang, CHENG Ping, WAN De-cheng. Numerical Analysis of a Floating Offshore Wind Turbine by Coupled Aero-hydrodynamic Simulation[J]. Marine Science and Application, Appl, 2019,18: 82-92.
[2] POSSNER A, CALDEIRA K. Geophysical Potential for Wind Energy over the Open Oceans[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43):11338-11343.
[3] BORGEN E. Floating Wind Power in Deep Water Competitive with Shallow-water Wind Farms[J]. Modern Energy Review, 2010, 2(1): 49-53.
[4] BUTTERFIELD S, MUSIAL W, JONKMAN J M, et al. Engineering Challenges for Floating Offshore Wind Turbines[R]. NREL/CP-500-38776. Golden, CO: National Renewable Energy Laboratory (NREL), 2007.
[5] JONKMAN J M. Dynamics of Offshore Floating Wind Turbines-Model Development and Verification[J]. Wind Energy, 2009, 12(5): 459-492.
[6] SKAARE B, NIELSEN F G, HANSON T D, et al. Analysis of Measurements and Simulations from the Hywind Demo Floating Wind Turbine[J]. Wind Energy, 2015, 18(6): 1105-1122.
[7] KARIMIRAD M, MOAN T. Extreme Dynamic Structural Response Analysis of Catenary Moored Spar Wind Turbine in Harsh Environmental Conditions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133(4): 041103.
[8] KARIMIRAD M, MOAN T. Wave- and Wind-Induced Dynamic Response of a Spar-Type Offshore Wind Turbine[J]. Waterway, Port, Coastal, and Ocean Engineering, 2012, 138: 9-20.
[9] KARIMIRAD M. Modeling Aspects of a Floating Wind Turbine for Coupled Wave-Wind-Induced Dynamic Analyses[J]. Renewable Energy, 2013, 53: 299-305.
[10] ROBERSTON A N, JONKMAN J M. Loads Analysis of Several Offshore Floating Wind Turbine Concepts[C]//Proceedings of the International Scociety of Offshore and Polar Engineers 2011 Conference, Maui, Hawaii. June 19-24, 2011: 19-24.
[11] MEYSAM K, BRAD B, CURRAN C. A Fully Coupled Frequency Domain Model for Floating Offshore Wind Turbines[J]. Ocean Engineering and Marine Energy, 2019, 5: 135-158.
[12] MEYSAM K, MATTHEW H, BRAD B, et al. A Multi-objective Design Optimization Approach for Floating Offshore Wind Turbine Support Structures[J]. Ocean Engineering and Marine Energy, 2017, 3: 69-87.
[13] KOPPERSTAD K M, KUMAR R, SHOELE K. Aerodynamic Characterization of Barge and Spar Type Floating Offshore Wind Turbines at Different Sea States[J]. Wind Energy, 2020, 23(11): 2087-2112.
[14] MA Yu, HU Zhi-qiang, XIAO long-fei,et al. Wind-wave Induced Dynamic Response Analysis for Motions and Mooring Loads of a Spar-Type Offshore Floating Wind Turbine[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(6): 865-874.
[15] 叶 舟, 詹枞州, 詹 培,等. 不同压载下海上漂浮式风力机Spar平台动态响应分析[J]. 热能动力工程, 2018, 33(11):130-137.
[16] 张大朋, 朱克强. Spar型海上浮式风机系泊系统的动力学分析[J]. 水道港口, 2017, 38(4):398-404.
[17] YUE Min-nan, LIU Qing-song, LI Chun, et al. Effects of Heave Plate on Dynamic Response of Floating Wind Turbine Spar Platform under the Coupling Effect of Wind And Wave[J]. Ocean Engineering, 2020, 201: 107103.
[18] 董 璐, 朱为全, 高 巍,等. 基于空气动力-水动力耦合分析的SPAR基础浮式风机系泊系统疲劳分析[J]. 中国海洋平台, 2019, 34(4):30-37.
[19] 黄小华,王芳芳,刘海阳,等. 系泊和压载方式对半潜式渔场平台动力特性的影响[J]. 农业工程学报, 2019, 35(15): 48-53.
[20] KOO B, GOUPEE A J, LAMBRAKOS K, et al. Model Tests for a Floating Wind Turbine on Three Different Floaters[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136: 020907-1-11.
[21] 李 英, 单良娥, 韩 宇,等. 海底短直管道轴向移动仿真模拟及锚固措施分析[J]. 中国海上油气, 2020, 32(5):162-170.
[22] 郑艳娜,董国海,桂福坤,等. 圆形重力式网箱锚碇系统的受力研究[J] 应用力学学报, 2007, 24(2):180-187.
[23] 贾凤和.吊环应力强度因子K的有限元计算及吊环的剩余寿命分析[J].西安交通大学学报,1979(3):50-62.

基金

国家自然科学基金项目(11932010)

PDF(4963 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map