针对土工合成材料土中与空气中抗拉性能的差异性,研制了一台土工合成材料土中拉伸试验机。该试验机采用可移动套筒以保证测试材料一直处于土体中,减少甚至消除填土与夹具之间的摩擦,使测得的试样受拉力值更为精确;采用双光杆滑动轨道以保证夹具与套筒的低摩阻定向移动。该试验机能进行土工合成材料土中、空气中以及侧限拉伸试验,还能进行拉拔和蠕变试验。采用该试验机进行了5种土工合成材料空气中、土中拉伸试验及侧限拉伸试验。结果表明,土工合成材料在筋土相互作用下的抗拉强度受筋材与土体间摩擦的影响较小,而侧限约束是造成土中拉伸与空气中拉伸巨大差异的主要原因;分别得到了空气中拉伸强度与土中拉伸强度、侧限拉伸强度的量化关系式,可由较容易测得的空气中拉伸强度直接求得土中拉伸强度或侧限拉伸强度,便于工程利用时参考。
Abstract
In view of the difference of tensile properties between in-soil and in-air geosynthetics, a tensile testing device for geosynthetics in soil was developed. Movable sleeve was adopted in the device to keep the geosynthetics in soil, which addressed the interference problem caused by the friction between the filling and the fixture; the friction of soil against the sleeve was also considered. Sliding track of double smooth rod was designed to ensure the low-friction directional movement of the fixture sleeve, and also avoided the eccentric stress of geosynthetic material in the tensile process. The upper and lower air pressure bags kept the geosynthetics in close contact with the soil and withstand confining pressure. The device could accomplish tensile test of geosynthetics both in soil and in air, as well as confined tensile test, creep test and in-soil pullout test. The device was applied to the in-air tensile test, in-soil tensile test and confined tensile test for five different types of geosynthetics. Results suggest that tensile strength was slightly affected by the friction between geosynthetics and soil; while confining pressure is the major cause of the huge difference between in-soil and in-air tensile strength. The quantitative relationship between the in-air and in-soil tensile strength or the confined tensile strength was obtained for engineering reference. The in-soil tensile strength or confined tensile strength can be deduced through the in-air tensile strength.
关键词
土工合成材料 /
抗拉强度 /
土中拉伸 /
空气中拉伸 /
量化关系 /
侧限拉伸
Key words
geosynthetics /
tensile strength /
in-soil tensile /
in-air tensile /
quantitative relationship /
confined lateral tensile
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 束一鸣, 吴海民, 姜晓桢. 中国水库大坝土工膜防渗技术进展[J]. 岩土工程学报, 2016, 38(增刊1): 1-9.
[2] 赵 亮, 闫澍旺. 吹填土地基道路工后不均匀沉降分析及加固措施研究[J]. 土木工程学报, 2012, 45(2): 176-183.
[3] BRODA J,GAWLOWSKI A,LASZCZAK R,et al. Application of Innovative Meandrically Arranged Geotextiles for the Protection of Drainage Ditches in the Clay Ground[J]. Geotextiles and Geomembranes, 2017, 45(1): 45-53.
[4] ZORNBERG J G. Functions and Applications of Geosynthetics in Roadways[J]. Procedia Engineering, 2017, 189: 298-306.
[5] ZIEFLER M.Application of Geogrid Reinforced Constructions:History,Recent and Future Developments[J]. Procedia Engineering, 2017, 172: 42-51.
[6] 吴景海. 土工合成材料界面作用特性的拉拔试验研究[J]. 岩土力学, 2006, 27(4): 581-585.
[7] 靳 静,杨广庆,刘伟超.横肋间距对土工格栅拉拔特性影响试验研究[J].中国铁道科学,2017,38(5):1-8.
[8] 黄文彬, 陈晓平. 土工织物与吹填土界面作用特性试验研究[J]. 岩土力学, 2014, 35(10): 2831-2837.
[9] 李 建, 唐朝生, 王德银,等. 基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J]. 岩土工程学报, 2014, 36(9): 1696-1704.
[10]SL 235—2012,土工合成材料测试规程[S]. 北京: 中国水利水电出版社, 2012.
[11]GB/T 17689—2008,土工合成材料-塑料土工格栅[S]. 北京: 中国标准出版社, 2008.
[12]ASTM D4595—2011,Standard Test Method for Tensile Properties of Geotextiles by the Wide-width Strip Method[S]. West Conshohocken, PA: ASTM International, 2011.
[13]ASTM D6637—2015, Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-rib Tensile Method[S]. West Conshohocken, PA: ASTM International, 2015.
[14]王 钊. 土工合成材料[M]. 北京: 机械工业出版社, 2005.
[15]吴 迪, 徐 超, 李 丹,等. 土工合成材料土中拉伸试验研究[J]. 西北地震学报, 2011, 3(增刊): 171-174.
[16]丁金华, 包承纲, 陈仁朋. 加筋土结构中筋材抗拉强度的取值方法研究[J]. 水利学报, 2012, 43(12): 1464-1469.
[17]周 萍,徐 超,李 丹,等. 土工合成材料土中拉伸试验研究[J]. 佳木斯大学学报,2014,32(5):675-682.
[18]丁金华, 童 军, 刘 军. 新型多功能土-土工合成材料试验机在筋土相互作用研究中的应用[J]. raybet体育在线
院报, 2017, 34(2): 29-34.
[19]王家全, 黄文勤, 张亮亮, 等. 砂土侧限下土工合成材料拉伸试验离散元模拟[J]. 广西大学学报(自然科学版), 2018, 43(4): 1482-1489.
[20]MENDES M J A, PALMEIRA E M, MATHEUS E. Some Factors Affectingthe In-soil Load-Strain Behaviour of Virgin and Damaged Nonwoven Geotextiles[J]. Geosynthetics International, 2007, 14(1): 39-50.
[21]BALAKRISHNAN S, VISWANADHAM B V S. Evaluation of Tensile Load-Strain Characteristics of Geogrids Through In-Soil Tensile Tests[J]. Geotextiles and Geomembranes, 2017, 45(1): 35-44.
[22]徐 超, 贾 斌, 罗玉珊. 间接加筋作用及加筋土挡墙离心模型试验验证[J]. 水文地质工程地质, 2015, 42(2): 77-82.
[23]唐 琳, 唐晓武, 佘 巍, 等. 单向拉伸对土工织物反滤性能影响的试验研究[J]. 岩土工程学报, 2013, 35(4): 785-788.
[24]吴海民, 束一鸣, 曹明杰, 等. 土工合成材料双向拉伸多功能试验机的研制及初步应用[J]. 岩土工程学报, 2014, 36(1): 170-175.
[25]王家全, 周岳富, 夏 雨,等. 新型可视土工拉拔试验仪的研发与应用[J]. 岩土工程学报, 2016, 38(4): 718-72
基金
国家自然科学基金项目(42067044);广西自然科学基金项目(2018GXNSFAA294130);桂林电子科技大学雷电竞rayget下载
创新计划项目(2020YCXS123)