高地应力地下厂房高边墙围岩支护强度的评价对于保证大型地下工程围岩稳定性具有重要意义。猴子岩水电站地下厂房地应力高、强度应力比低,施工开挖中出现喷混凝土开裂、岩锚梁错位、岩体开裂、锚墩内陷等典型的围岩变形破坏现象,对洞室安全造成严重威胁。通过多点位移计、锚杆和锚索的应力监测数据分析,将猴子岩和锦屏Ⅰ级水电站地下厂房进行比较,提出了预应力锚索和锚杆的单位面积预应力支护强度计算方法,并根据评价结果对局部洞段进行针对性的围岩补强支护设计。结果表明:猴子岩地下厂房围岩变形整体上比同期的锦屏Ⅰ级围岩变形大,而锚索应力水平比锦屏Ⅰ级小,锚杆应力水平整体相当;猴子岩地下厂房下游边墙的支护强度大于锦屏Ⅰ级下游边墙的支护强度,上游边墙的支护强度小于锦屏Ⅰ级下游边墙相应部位支护强度,猴子岩地下厂房上游边墙补强支护后的围岩变形得到有效控制,表明了补强措施的有效性。研究可为类似高地应力地下洞室围岩支护设计和支护强度评价提供参考和借鉴。
Abstract
Assessing the support strength of surrounding rock of high sidewall is of crucial significance for the surrounding rock stability in underground projects of high geostress. Due to high geostress and low strength-to-stress ratio, the underground powerhouse of Houziyan Hydropower Station experienced typical deformations and failures of surrounding rock during construction and excavation, including cracking of shotcrete layer, dislocation between rock anchor beam and anchor pier, and cracking of rock mass, posing severe threat to the safety of the underground cavern. By analyzing the data from multi-point displacement meter and anchor stress monitoring, we proposed the formula and method for assessing the prestressed supporting strength per unit area of prestressed anchor cables and anchor rods, and further designed corresponding reinforcement measures for sidewalls according to the assessment results. Our findings revealed that the deformation of the surrounding rock of Houziyan underground powerhouse was larger than that of the Jinping I-stage project in the same period, while the stress level of anchor cable was smaller, and the overall stress level of anchor rod was equivalent to that of Jinping I-stage project. The supporting strength of Houziyan's downstream sidewall was larger than that of Jinping's downstream sidewall, whereas that of upstream side wall lower than that of Jinping's downstream sidewall. In the later period, the deformation and displacement of surrounding rock after the reinforcement of the upstream and downstream sidewalls of Houziyan underground powerhouse was effectively controlled,and the deformation rate gradually reduced and finally stabilized,manifesting the effectiveness of the measures.
关键词
支护强度评价 /
围岩变形 /
高地应力 /
高边墙 /
补强支护 /
猴子岩地下厂房
Key words
assessment of support strength /
deformation of surrounding rock /
high geostress /
high sidewall /
reinforcing support /
Houziyan underground powerhouse
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 魏志云,徐光黎,申艳军,等. 大岗山水电站地下厂房区辉绿岩脉群发育特征及稳定性状况评价[J]. 工程地质学报,2013,21(2): 206-215.
[2] SHEN Y J, XU G L, YI J. A Systematic Engineering Geological Evaluation of Diabase Dikes Exposed at the Underground Caverns of Dagangshan Hydropower Station, Southwest China[J]. Environmental Earth Sciences, 2017, 76: 481.
[3] 董家兴,徐光黎,李志鹏,等. 高地应力条件下大型地下洞室群围岩失稳模式分类及调控对策[J]. 岩石力学与工程学报,2014,33(11): 2161-2170.
[4] 李志鹏,徐光黎,董家兴,等. 猴子岩水电站地下厂房洞室群施工期围岩变形与破坏特征[J]. 岩石力学与工程学报,2014,33(11): 2291-2300.
[5] 张 勇,肖平西,丁秀丽,等. 高地应力条件下地下厂房洞室群围岩的变形破坏特征及对策研究[J]. 岩石力学与工程学报,2012,31(2): 228-244.
[6] 许 强,张登项,郑 光,等. 锦屏Ⅰ级水电站左岸坝肩边坡施工期破坏模式及稳定性分析[J]. 岩石力学与工程学报,2009,28(6): 1183-1192.
[7] 程丽娟,李仲奎,郭 凯,等. 锦屏一级水电站地下厂房洞室群围岩时效变形研究[J]. 岩石力学与工程学报,2011,30(增刊1): 3081-3088.
[8] FENG X T, XU H, QIN L S,et al. In Situ Observation of Rock Spalling in the Deep Tunnels of the China Jinping Underground Laboratory (2400 m Depth)[J]. Rock Mechanics and Rock Engineering, 2018, 51: 1193-1213.
[9] 郑进修,张建海,高克静,等. 地下厂房支护措施经验回归及支护强度判据[J]. 岩土力学,2018,39(增刊1): 303-310.
[10]XIAO P W,LI T B,XU N W,et al. Microseismic Monitoring and Deformation early Warning of the Underground Caverns of Lianghekou Hydropower Station, Southwest China[J]. Arabian Journal of Geosciences,2019,12:496.
[11]LI A, LIU Y, DAI F,et al. Continuum Analysis of the Structurally Controlled Displacements for Large-scale Underground Caverns in Bedded Rock Masses[J]. Tunnelling and Underground Space Technology, 2020, 97: 103288.
[12]陈仲先,汤 雷. 高地应力大型地下洞室的位移和锚杆应力特性[J]. 岩土工程学报,2000,22(3): 294-298.
[13]张罗彬,程丽娟,候 攀,等. 高第二主应力条件下大跨度洞室围岩变形破坏特征分析及支护措施[J]. raybet体育在线
院报,2014,31(11): 108-113,119.
[14]李志鹏,徐光黎,董家兴,等. 高地应力地下厂房围岩破坏特征及地质力学机制[J]. 中南大学学报,2017,48(6): 1568-1576.
[15]黄润秋,黄 达,段绍辉,等. 锦屏Ⅰ级水电站地下厂房施工期围岩变形开裂特征及地质力学机制研究[J]. 岩石力学与工程学报,2011,30(1): 23-35.
[16]董家兴,徐光黎,李志鹏,等. 高地应力条件下大型地下洞室群围岩失稳模式分类及调控对策[J]. 岩石力学与工程学报,2014,33(11): 2161-2170.
[17]董家兴. 高地应力条件下大型地下洞室群围岩变形破坏机制研究[D]. 武汉:中国地质大学(武汉),2014.
[18]程丽娟,李治国,王金生,等. 四川省大渡河猴子岩水电站地下厂房主洞室围岩加强支护措施设计报告[R].成都:中国水电顾问集团成都勘测设计研究院有限公司,2014.
[19]XIAO X H, XIAO P W, DAI F, et al. Large Deformation Characteristics and Reinforcement Measures for a Rock Pillar in the Houziyan Underground Powerhouse[J]. Rock Mechanics and Rock Engineering, 2018, 51: 561-578.
[20]张方涛,王春艳,康安栋,等. 高中间主应力地下厂房高边墙围岩补强支护及效果评价[J]. 水电能源科学,2016,34(3):140-144.
基金
国家自然科学基金项目(42162026);昆明理工大学省级人培项目(KKSY201504022)