基于三维点云的结构面产状获取方法研究

冯文凯, 曾唯恐, 程柯力, 易小宇, 焦隆新

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (9) : 128-132.

PDF(804 KB)
PDF(804 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (9) : 128-132. DOI: 10.11988/ckyyb.20200680
岩土工程

基于三维点云的结构面产状获取方法研究

  • 冯文凯, 曾唯恐, 程柯力, 易小宇, 焦隆新
作者信息 +

Method of Obtaining Structural Plane Occurence Based on Three-dimensional Point Cloud

  • FENG Wen-kai, ZENG Wei-kong, CHENG Ke-li, YI Xiao-yu, JIAO Long-xin
Author information +
文章历史 +

摘要

为快速从地质结构面三维点云数据中提取产状信息,基于Python程序设计语言,编程实现了一套自动拟合平面并计算结构面产状的算法。首先,介绍了最小二乘法和主成分分析法2种算法原理和求解平面方程思路;其次,利用Python语言分别设计实现了上述算法,并引入奇异值分解帮助求解主成分向量,给出了关键代码和程序流程;最后,对2种算法进行对比和误差分析,并将平面方程转换为产状信息。将该方法应用于国际公开试验数据,人工截取指定结构面产状,计算结果平均值与实际值相比<1°,最大不超过2°;无监督聚类分割生成的不规则结构面产状计算结果平均值与实际值相比<4°,最大不超过8°,且主成分分析法误差更小。结果表明,该方法精确度高,使用简便,满足工程实际需要。

Abstract

To extract rapidly the occurrence information from three-dimensional point cloud data of geological structural plane, we completed a set of algorithms that automatically fit the plane and calculate the structural plane occurrence by programming using Python. First of all, we expounded the principles of least squares and principal component analysis as well as the solution of plane equations; secondly, we designed the above two algorithms using Python language, and introduced singular value decomposition to help solve the principal component vector, and gave the key code and program flow; finally, we compared the two algorithms and analyzed their errors, and converted the plane equation into occurrence information. We then applied the present method to international public experimental data. Results manifested that for specified structural planes manually intercepted, the calculation error of structural plane occurrence was less than 1° on average compared with the actual value, not exceeding 2°; for irregular structural planes generated by unsupervised clustering segmentation, the calculation error was less than 4° on average compared with the actual value, not exceeding 8°. The error of principal component analysis method was even smaller. The results demonstrated that the present method is of high accuracy and convenience, and hence meeting practical engineering requirements.

关键词

结构面产状 / 三维点云数据 / 平面拟合 / 最小二乘法 / 主成分分析法 / Python程序

Key words

structural plane occurence / three-dimensional point cloud data / plane fitting / least square method / principal components analysis method / Python

引用本文

导出引用
冯文凯, 曾唯恐, 程柯力, 易小宇, 焦隆新. 基于三维点云的结构面产状获取方法研究[J]. raybet体育在线 院报. 2021, 38(9): 128-132 https://doi.org/10.11988/ckyyb.20200680
FENG Wen-kai, ZENG Wei-kong, CHENG Ke-li, YI Xiao-yu, JIAO Long-xin. Method of Obtaining Structural Plane Occurence Based on Three-dimensional Point Cloud[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(9): 128-132 https://doi.org/10.11988/ckyyb.20200680
中图分类号: P642   

参考文献

[1] 董秀军,黄润秋. 三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报,2006,25(2):3629-3635.
[2] 娄国川,赵其华.基于三维激光扫描技术的高边坡岩体结构调查[J].raybet体育在线 院报,2009,26(9):58-61.
[3] 李万逵.激光扫描在阿尔塔什右岸高边坡稳定性分析中的应用[J].水利与建筑工程学报,2011,9(2):66-72.
[4] 黄 江.三维激光扫描技术在高边坡危岩体调查中的应用与讨论[J].raybet体育在线 院报,2013,30(11):45-49.
[5] 胡 伟,邬爱清,陈胜宏.基于三维形貌分析的结构面剪切试验研究[J].raybet体育在线 院报,2017,34(9):91-98.
[6] 周春霖,朱合华,赵 文. 双目系统的岩体结构面产状非接触测量方法[J]. 岩石力学与工程学报,2010,29(1):111-117.
[7] 王明常,徐则双,王凤艳,等. 基于摄影测量获取岩体结构面参数的概率分布拟合检验[J].吉林大学学报(地球科学版),2018,46(6):1898-1906.
[8] 李明磊,李广云,王 力. 点云平面拟合新方法[J].测绘通报,2012(增刊):84-87.
[9] 潘国荣,秦世伟,蔡润彬,等. 三维激光扫描拟合平面自动提取算法[J].同济大学学报(自然科学版),2009,37(9):1250-1255.
[10] 官云兰,程效军,施贵刚. 一种稳健的点云数据平面拟合方法[J].同济大学学报(自然科学版),2008,26(7):981-984.
[11] RIQUELME A J, ABELLÁN A, TOMÁS R, et al. A New Approach for Semi-automatic Rock Mass Joints Recognition from 3d Point Clouds[J]. Computers & Geosciences, 2014(68): 38-Y52.
[12] 蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18.

基金

国家自然科学基金项目(41977252);2018年度交通运输行业重点科技项目(2018-ZD5-029)

PDF(804 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map