基于试验流域的季风区洪水特性及其水文模拟

刘悦, 张建云, 陈鑫, 王婕, 鲍振鑫, 管晓祥, 刘翠善, 王国庆

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (8) : 25-32.

PDF(5813 KB)
PDF(5813 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (8) : 25-32. DOI: 10.11988/ckyyb.20200659
水资源

基于试验流域的季风区洪水特性及其水文模拟

  • 刘悦1,2,3,4, 张建云1,2,3,4, 陈鑫2,3, 王婕2,3, 鲍振鑫2,3, 管晓祥1,2,3,4, 刘翠善2,3, 王国庆2,3,4
作者信息 +

Flood Characteristics and Hydrological Simulations in Monsoon Area Based on Experimental Watersheds

  • LIU Yue1,2,3,4, ZHANG Jian-yun1,2,3,4, CHEN Xin2,3, WANG Jie2,3, BAO Zhen-xin2,3, GUAN Xiao-xiang1,2,3,4, LIU Cui-shan2,3, WANG Guo-qing2,3,4
Author information +
文章历史 +

摘要

根据我国安徽省5个试验流域的实测资料,分析了各流域场次洪水的特性,并利用TOPMODEL模型对各流域进行次洪模拟,进一步探讨该模型在我国东部季风区洪水预报方面的适用性。结果表明:安徽省各试验流域场次洪水的降雨量-径流深散点均呈现较好的正相关性,降雨量随着海拔的升高而增大,山区的径流系数大于平原丘陵区;面积最小的瓦屋刘流域对暴雨的响应最为敏感,孙村流域场次洪水的洪峰模数差异最小、起涨时间最长,黄山流域场次洪水的历时最久;随着海拔的升高,流域地形指数的平均值逐渐增大,同时各流域面积占比最大所对应的地形指数逐渐减小;地形指数标准差越大的流域,土地利用类型也越丰富;TOPMODEL模型总体上可以较好地模拟安徽省各试验流域场次洪水过程,且对大流量的捕捉效果优于小流量,对天然流域的模拟效果优于人类活动扰动的流域。

Abstract

Study on flood characteristics and hydrological simulations are of great significance to flood control and disaster mitigation. According to the measured data of five experimental watersheds in Anhui Province, we analyze the characteristics of the floods in each watershed, and then simulate the floods in each watershed by using TOPMODEL to examine its applicability in flood forecasting in the monsoon region of east China. Our results reveal that the rainfall-runoff scatter points of floods in each experimental watershed all present a good positive correlation. The rainfall amount increases with the rising of elevation, and the runoff coefficients in mountainous area are greater than those in the plain and hilly area. The Wawuliu watershed which has the smallest area is the most sensitive to storms; the Suncun watershed features the smallest difference in the modulus of flood peak and the longest flood rising time; while the Huangshan watershed has the longest flood duration. The average value of watershed's topographic index gradually increases with the rising of altitude, while the value corresponding to the largest proportion drops. And the larger the standard deviation of the topographic index is, the more diversified land use types the watershed has. The TOPMODEL can generally reproduce the flood processes of each experimental watershed, and the captured results of large flows are better than those of small ones. The simulation of natural watersheds is better than that of human-disturbed watersheds.

关键词

洪水特性 / 地形指数 / 试验流域 / TOPMODEL模型 / 次洪模拟

Key words

flood characteristics / topographic index / experimental watersheds / TOPMODEL / flood simulations

引用本文

导出引用
刘悦, 张建云, 陈鑫, 王婕, 鲍振鑫, 管晓祥, 刘翠善, 王国庆. 基于试验流域的季风区洪水特性及其水文模拟[J]. raybet体育在线 院报. 2021, 38(8): 25-32 https://doi.org/10.11988/ckyyb.20200659
LIU Yue, ZHANG Jian-yun, CHEN Xin, WANG Jie, BAO Zhen-xin, GUAN Xiao-xiang, LIU Cui-shan, WANG Guo-qing. Flood Characteristics and Hydrological Simulations in Monsoon Area Based on Experimental Watersheds[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(8): 25-32 https://doi.org/10.11988/ckyyb.20200659
中图分类号: P467   

参考文献

[1] 梁汝豪,林凯荣,林友勤,等.基于TOPMODEL的中小河流分布式洪水预报模型及其应用[J].水利水电技术,2019,50(9):62-68.
[2] 李 丹.TOPMODEL在韩江流域暴雨径流模拟中的应用研究[J].广东水利水电,2014(6):12-17.
[3] CRAWFORD N H, LINSLEY R S. Digital Simulation In Hydrology: The Stanford Watershed Model IV. Technical Report[R]. Palo Alto, CA: Stanford University, 1966.
[4] SUGAWARA M. Automatic Calibrationof the Tank model[J]. Hydrological Science Bulletin, 1979, 24:375-388.
[5] ZHAO R J.The Xinanjiang Model Applied in China[J]. Hydrology, 1992, 135:371-381.
[6] BEVEN K J, KIRKBY M J. A Physically Based, Variable Contributing Area Model of Basin Hydrology[J]. Hydrological Science Bulletin,1979, 24(1): 43-69.
[7] CIARAPICA L, TODINI E. TOPKAPI:A Model for the Representation of the Rainfall-Runoff Process at Different Scales[J]. Hydrological Processes, 2002, 16: 207-229.
[8] KOBOLD M, BRILLY M. The Use of HBV Model for Flash Flood Forecasting[J]. Natural Hazards and Earth System Science, 2006, 6: 407-417.
[9] ABBOTT M B, BATHURST J C, CUNGE J A,et al. An Introduction to the European Hydrological System-Systeme Hydrologique Europeen, ‘She' 2: Structure of a Physically-based, Distributed Modelling System[J]. Hydrology, 1986, 87: 61-77.
[10]CALVER A, WOOD W L. The Institute of Hydrology Distributed Model[M]. SINGH V P Computer Models of Watershed Hydrology. Colorado: Water Resource Publications, 1995:595-626.
[11]丁 飞,潘剑君.分布式水文模型SWAT的发展与研究动态[J].水土保持研究,2007(1):33-37.
[12]罗志勇,杨炳良,管晓祥,等.不同水文模型在金溪流域的模拟与适应性研究[J].华北水利水电大学学报(自然科学版),2018,39(3):6-12.
[13]霍文博,李致家,李巧玲.半湿润流域水文模型比较与集合预报[J].湖泊科学,2017,29(6):1491-1501.
[14]孙翠梅,刘晶淼.TOPMODEL在水阳江流域的应用及模型对DEM的敏感性检验[J].中国农村水利水电,2007(2):102-105,108.
[15]解河海,郝振纯,黄国如,等.地形指数算法对TOPMODEL模拟精度的影响[J].水利水电技术,2007(8):19-22.
[16]戴明龙,周建中,刘冬英,等.Topmodel模型在柬埔寨典型区域的应用研究[J].人民长江,2018,49(22):69-73.
[17]陈红刚,李致家,李 锐,等.新安江模型、TOPMODEL和萨克拉门托模型的应用比较[J].水力发电,2009,35(3):14-18,25.
[18]王 强,许有鹏,王跃峰,等.中国东部不同特征小流域水文对比观测试验分析[J].水科学进展,2019,30(4):467-476.
[19]付丛生,陈建耀,曾松青,等.国内外实验小流域水科学研究综述[J].地理科学进展,2011,30(3):259-267.
[20]刘 悦,舒心怡,管晓祥,等.城西试验流域水文特性及水文过程模拟[J].水资源与水工程学报,2019,30(4):32-38.
[21]刘 悦,鲍振鑫,金君良,等.滁州市城西试验流域植被区土壤蒸发特性及其驱动要素研究[J].华北水利水电大学学报(自然科学版),2019,40(6):1-6.
[22]宁祥葆,潘之棣.介绍瓦屋刘径流实验站[J].水文工作通讯,1957(8):34-36.
[23]王 婕,宋晓猛,张建云,等.中小尺度流域洪水模型模拟比较研究[J].中国农村水利水电,2019(7):72-76.
[24]刘青娥,左其亭.TOPMODEL模型探讨[J].郑州大学学报(工学版),2002(4):82-86.
[25]邓慧平,李秀彬.地形指数的物理意义分析[J].地理科学进展,2002(2):103-110.
[26]张 静,王本德.基于相关分析的雨量站选择及洪水预报方法[J].水文,2007(3):31-34.

基金

国家自然科学基金项目(41830863, 51879162)

PDF(5813 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map