隧道围岩在富水环境下流变现象显著。以某砂岩隧道为研究对象,开展砂岩饱和状态下的三轴压缩蠕变试验,建立考虑含水率的损伤表达式。砂岩流变性态为黏性-黏弹性-黏塑性,通过统一流变力学模型理论确定蠕变模型结构为H- N -H|N -N|S,基于此模型进行损伤演化,从而得到蠕变损伤模型并将其推广为三维情形。将本构模型三维差分化,通过C++和FISH语言在FLAC3D中实现了二次开发。还原实际试验条件,进行仿真验证,证明二次开发成功及模型参数求取的正确性。建立隧道三维模型,调用自定义蠕变本构模型,进行不同蠕变时间下的数值计算,验证本文蠕变损伤模型在岩体工程应用中的可行性。研究成果可为类似本构模型的构建与开发及隧道长期营运安全性分析提供参考。
Abstract
Notable rheological behavior has been observed in the surrounding rock of tunnel in water-rich environment. The expression of creep damage in consideration of water content is established through triaxial compression creep test on sandstone at saturated state. The rheological behavior of sandstone is visco-viscoelastic-viscoplastic. The structure of creep model is determined as H-N-H|N-N|S by the unified rheological mechanics model theory. On such basis, the creep damage model is obtained through damage evolution and is extended to three-dimensional case. By three-dimensional difference computation of the constitutive model, secondary development is completed in FLAC3D by C++ and FISH languages. The secondary development is proved successful and the parameters of the model are correct via numerical verification. The present creep damage model is also verified feasible by three-dimensional computation of the tunnel under varied creep time. The research results offer reference for establishing and developing similar constitutive models and analyzing the safety of long-term tunnel operation.
关键词
砂岩 /
蠕变损伤 /
本构模型 /
二次开发 /
数值仿真 /
位移监测
Key words
sandstone /
creep damage /
constitutive model /
secondary development /
numerical simulation /
displacement monitoring
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙 钧. 岩土材料流变及其工程应用[M]. 北京:中国建筑工业出版社, 1999.
[2] 于永江, 张 伟, 张国宁, 等. 富水软岩的蠕变特性实验及非线性剪切蠕变模型研究[J]. 煤炭学报, 2018, 43(6):1780-1788.
[3] 唐 皓. 大理岩瞬时及流变力学特性与本构模型研究[D]. 西安:长安大学, 2014.
[4] NEDJAR B, ROY R L. An Approach to the Modeling of Viscoelastic Damage. Application to the Long-term Creep of Gypsum Rock Materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(9): 1066-1078.
[5] 王其虎, 叶义成, 刘艳章, 等. 考虑初始损伤和蠕变损伤的岩石蠕变全过程本构模型[J]. 岩土力学, 2016, 37(增刊1):57-62.
[6] JIA S P,ZHANG L W,WU B S,et al. A Coupled Hydro-mechanical Creep Damage Model for Clayey Rock and Its Application to Nuclear Waste Repository[J]. Tunnelling and Underground Space Technology,2018,74:230-246.
[7] 胡光辉, 徐 涛, 陈崇枫, 等. 基于离散元法的脆性岩石细观蠕变失稳研究[J]. 工程力学, 2018, 35(9):36-46.
[8] 胡 浩. 基于分数阶微积分的岩石非线性蠕变本构模型研究及其在Flac3D中的二次开发[D]. 北京:中国地震局地震研究所, 2019.
[9] 张新岩. 基于围岩蠕变和注浆浆液硬化的盾构隧道力学特性研究[D]. 成都:西南交通大学, 2017.
[10] 朱赛楠, 殷跃平, 李 滨. 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4):1377-1386.
[11] 李良权, 徐卫亚, 王 伟, 等. 基于流变试验的向家坝砂岩长期强度评价[J]. 工程力学, 2010, 27(11): 127-136,143.
[12] 张强勇, 杨文东, 张建国, 等. 变参数蠕变损伤本构模型及其工程应用[J]. 岩石力学与工程学报, 2009, 28(4):732-739.
[13] 夏才初, 许崇帮, 王晓东, 等. 统一流变力学模型参数的确定方法[J]. 岩石力学与工程学报, 2009,28(2): 425-432.
[14] 袁靖周. 岩石蠕变全过程损伤模拟方法研究[D]. 长沙:湖南大学, 2012.
[15] 黄海峰, 巨能攀, 黄 敏, 等. 软岩非线性蠕变损伤模型及其试验研究[J]. 水文地质工程地质, 2017, 44(3): 49-54.
[16] LEMAITRE J. A Continuous Damage Mechanics Model for Ductile Fracture[J]. Journal of Engineering Materials & Technology, 1985, 107: 83-89.
[17] 宋 飞, 赵法锁, 卢全中. 角砾岩流变特性及流变模型研究[J]. 岩石力学与工程学报, 2005, 24(15):2659-2664.
[18] 陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京:中国水利水电出版社, 2009.
基金
辽宁省“兴辽英才计划”青年拔尖人才资助项目(XLYC2007146);国家自然科学基金项目(51879189)