为验证复合浆材堆石体技术思路的可行性,开展了现场试验研究。通过现场浆液制备、分层堆石、注浆及机械碾压,形成复合浆材堆石结构,并进行地质雷达、钻孔取芯检测以及汛后检查,直观评价注浆效果和整体性能。研究结果表明:堆石平均空隙率为26%~30%,注入的浆液流动度为200~240 mm;对于0.5 m和0.75 m层厚的堆石,分别振动碾压6遍和8遍基本满足压实度要求;各注浆碾压层的雷达反射波相对均匀,注净浆的测试结果优于注砂浆;芯样获得率不高,抗压强度8.5~15.1 MPa;实际过流与汛期后检查结果是试验区结构完整、稳定无破坏;为提高施工效率及注浆效果,建议石料去除5 mm以下颗粒并提前湿润,根据现场环境适时调整浆液配方,可采用串筒、溜槽等设备或喷洒方式多点均匀注浆。复合浆材堆石体的技术思路,有助于提高堆石基座的压缩变形模量、减少超高堆石坝的整体沉降,具有广阔的工程应用前景,以期为300 m级超高堆石坝的建设提供技术支撑。
Abstract
Field exploratory experimental study was carried out to verify the feasibility of the technology of composite slurry-rockfill structure. The test procedures include slurry preparation, layered rockfill, grouting and mechanical rolling. The test methods include geological radar, drilling and coring, and post-flood inspection. Results reveal that the average porosity of rockfill is 26%-30%, and the fluidity of slurry is 200-240 mm. For rockfills with thicknesses of 0.5 m and 0.75 m, vibrating rolling 6 times and 8 times respectively will meet the requirements of compaction. The radar reflection wave of each grouting roller compacted layer is relatively uniform, and the test result of grouting paste is better than that of grouting mortar. The acquisition rate of core sample is not high, and the compressive strength of core sample is 8.5-15.1 MPa. Inspection after the flood season shows that the structure of the test area is complete, stable and undamaged. To improve the construction efficiency and grouting effect, we recommended removing the particles below 5 mm and humidifying in advance and adjust the slurry formula according to the on-site environment. Equipment such as tandem cylinders, chutes, or method of spraying grouting at multiple points can also be employed. The technical idea of composite grout rockfill structure helps to increase the compressive deformation modulus of the rockfill foundation and reduce the overall settlement of the ultra-high rockfill dam, thus providing technical support for the construction of 300 m level ultra-high rockfill dam.
关键词
复合浆材堆石坝 /
现场试验 /
注浆 /
碾压 /
地质雷达
Key words
composite slurry-rockfill structure /
field experiment /
grouting /
rolling /
geological radar
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谭界雄,卢建华,田 波,等. 堆石坝加固技术研究与应用[J].人民长江,2010,41(15):38-42.
[2] 杨泽艳.中国混凝土面板堆石坝发展30年[J].水电与抽水蓄能,2017,3(1):1-5,12.
[3] 杨启贵,刘 宁,孙 役. 水布垭面板堆石坝筑坝技术[M].北京:中国水利水电出版社,2010.
[4] 马洪琪. 300m级面板堆石坝适应性及对策研究[J].中国工程科学,2011,13(12): 4-8,19.
[5] 李 鹏. 双江口水电站特高心墙堆石坝建设关键技术研究[J].水电与新能源,2020(2):1-9.
[6] 张宗亮. 超高石坝工程设计与技术创新[J].岩土工程学报,2007,29(8):1184-1193.
[7] 钮新强,谭界雄,田金章. 混凝土面板堆石坝病害特点及其除险加固[J].人民长江,2016,47(13):1-5.
[8] 马洪琪,曹克明.超高面板坝的关键技术问题[J].中国工程科学,2007,9(11):12-16,29.
[9] 郦能惠,孙大伟,李登华.300 m级超高面板堆石坝变形规律的研究[J].岩土工程学报,2009,31(2):155-160.
[10] 徐泽平. 面板堆石坝应力变形特性研究[D].北京:中国水利水电科学研究院,2005.
[11] GB/T 8077—2012,混凝土外加剂匀质性试验方法[S].北京:中国标准出版社,2013.
[12] 曾昭发,刘四新.探地雷达方法原理及应用[M].北京:科学出版社,2006.
[13] 周黎明,王法刚. 地质雷达法检测隧道衬砌混凝土质量[J].岩土工程界,2003,6(3):74-76.
[14] CECS 03—2007, 钻芯法检测混凝土强度技术规程[S]. 北京:中国计划出版社,2008.
基金
国家重点研发计划项目(2019YFC1510803);国家自然科学基金项目(U2040222、51779019);中央级公益性科研院所基本科研业务费项目(CKSF2019394/GC)