变形监测是反馈工程安全最直接、最重要的手段之一,目前一般以人工监测为主,存在监测信息反馈慢、作业风险高等弊端,尤其是在工程遭遇有感地震、区域性暴雨等灾害时,实时采集数据、反馈监测信息和及时决策问题更为凸显。为此,以瀑布沟砾石土心墙堆石坝外部变形自动化监测工程为依托,对改正算法、监测方案、仪器野外保护、自动化控制和实时采集等展开了系列的研究与实践。提出了测量机器人基线边差分与气象融合改正测量法,以及TPS/GNSS融合互补监测方案,研发了一体化智能测站系统以及监测数据采集分析系统,具备采样频率自适应、观测时段自寻优、应急场景自识别、最优模型自匹配、精密仪器自防护功能,显著提高了变形监测数据质量,提升变形监测智能化水平,为行业变形自动化监测提供了一种可行的参考方案,具有一定推广应用价值。
Abstract
Deformation monitoring is a most direct and important approach to feedback engineering safety, mainly manual monitoring at present. But manual monitoring features slow information feedback and high operational risk. Problems of real-time data collection, monitoring information feedback and timely decision-making are more prominent especially during earthquakes or regional rainstorms. In view of this, we proposed a method integrating baseline edge difference and meteorological fusion correction and the TPS/GNSS fusion complementary monitoring scheme by researching the correction algorithms, monitoring schemes, field protection of instruments, automatic control and real-time acquisition for the rockfill dam of the gravel earth core of Pubugou Project. Moreover, we developed an integrated intelligent monitoring station system and a monitoring data acquisition and analysis system. The system has functions of self-adapting sampling frequency, self-optimizing observation period, self-identifying emergency scene, self-matching optimal model, and self-protecting instrument. The system significantly improves the quality of deformation monitoring data, enhances the intelligence level of deformation monitoring, and provides a feasible reference solution for automatic deformation monitoring.
关键词
大坝变形监测 /
智能测站 /
一体化 /
大视场角 /
保护罩 /
远程控制 /
瀑布沟
Key words
dam deformation monitoring /
smart monitoring station /
integration /
large field angle /
protective devices /
remote control /
Pubugou
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 渠守尚,马 勇.测量机器人在小浪底大坝外部变形监测中的应用[J].测绘通报,2001(4):35-37.
[2] 渠守尚,马原平.大坝外部变形自动化监测系统的应用试验[J].大坝观测与土工测试,2001,25(3):25-28.
[3] 鄢 涛,陈 波,曹恩华,等.基于EEMD-ELM的大坝变形预测模型[J].raybet体育在线
院报,2020,37(11):70-73,80.
[4] 冯国正,刘世振,李 艳,等.基于GNSS/INS紧耦合的水陆地形三维一体化崩岸监测技术[J].raybet体育在线
院报,2019,36(10):94-99.
[5] 袁天奇,张 冰.大坝外部变形监测技术现状与发展趋势[J].水力发电,2003,29(6):52-55.
[6] 易 华,韩 笑,王恺仑,等.物联网技术在大型水电站安全监测自动化系统中的应用[J].raybet体育在线
院报,2019,36(6):166-170.
[7] 陈国明.莲花水电站外部变形自动监测系统改造[J].大坝与安全,2007(2):43-46.
[8] 牛广利,李端有,李天旸,等.基于云平台的大坝安全监测数据管理及分析系统研发与应用[J].raybet体育在线
院报,2019,36(6):161-165.
[9] 伍志刚,张国良,余宣兴,等.万家寨水利枢纽外部变形观测控制网自动化系统[J].水利水电工程设计,2000(1):47-48,53.
[10]马伟明.TCA测量机器人在三屯河水库大坝外部变形监测中的应用[J].大坝与安全,2004(6):45-47.
[11]卫建东.基于测量机器人的自动变形监测系统[J].测绘通报,2006(12):41-44,72.
[12]熊成林,孙建会,王万顺,等.株洲航电枢纽外部变形自动监测解决方案及应用[J].水利水电技术,2008(1):72-74.
[13]张昊宇,周克勤,宋亚腾,等.基于新型FMCW地基合成孔径雷达的大坝变形监测[J].raybet体育在线
院报,2017,34(12):33-37,43.