宗通卡水库蓄水后砷的时空分布模拟与评价

翟文亮, 曹慧群, 罗平安

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (2) : 7-11.

PDF(4993 KB)
PDF(4993 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (2) : 7-11. DOI: 10.11988/ckyyb.20191250
水资源与环境

宗通卡水库蓄水后砷的时空分布模拟与评价

  • 翟文亮, 曹慧群, 罗平安
作者信息 +

Temporal and Spatial Distribution of Arsenic after Storage in Zongtongka Reservoir: Simulation and Evaluation

  • ZHAI Wen-liang, CAO Hui-qun, LUO Ping-an
Author information +
文章历史 +

摘要

为科学评估成库后砷对宗通卡水库的影响,构建了三维水沙砷预测模型,采用等温吸附试验分析水库蓄水后泥沙对砷的吸附平衡规律;以水文水质条件相似的果多水库对模型参数进行验证,模拟宗通卡水库成库后不同水期砷的三维分布。结果表明:蓄水后水库泥沙浓度和砷浓度呈沿程下降的变化规律。泥沙浓度呈现丰水期大于枯水期的特征,坝前泥沙浓度由表层至底层呈现明显增大的变化规律;砷浓度呈现丰水期小于枯水期的特征,支流浓度较大时会形成岸边污染带,坝前砷浓度由表层至底层均呈现明显增大的变化规律。研究成果为开展环境影响评价提供了参考依据。

Abstract

A three-dimensional model of predicting arsenic in water and sediment was constructed to scientifically evaluate the influence of arsenic on Zongtongka Reservoir after reservoir formation. The adsorption equilibrium of sediment on arsenic after reservoir impoundment was analyzed through isothermal adsorption test. The Guoduo Reservoir which is of similar hydrological and water quality conditions with Zongtongka Reservoir verified the model parameters and simulated the three-dimensional distribution of arsenic in different water periods after the Zongtongka Reservoir was impounded. Results revealed that after water storage, the sediment concentration and arsenic concentration of the reservoir both declined along the stream. Sediment concentration in wet season is larger than that in dry season, and sediment concentration in front of the dam in the surface is obviously smaller than that in the bottom; while arsenic concentration in wet season is smaller than that in dry season, and when the arsenic concentration in tributary is large, shore pollution zone will be formed. Arsenic concentration in front of the dam shows a significant increase from the surface layer to the bottom layer.

关键词

/ 分配系数 / 等温吸附试验 / 时空分布 / 宗通卡水库

Key words

arsenic / partition coefficient / isothermal adsorption experiment / temporal and spatial distribution / Zongtongka Reservoir

引用本文

导出引用
翟文亮, 曹慧群, 罗平安. 宗通卡水库蓄水后砷的时空分布模拟与评价[J]. raybet体育在线 院报. 2021, 38(2): 7-11 https://doi.org/10.11988/ckyyb.20191250
ZHAI Wen-liang, CAO Hui-qun, LUO Ping-an. Temporal and Spatial Distribution of Arsenic after Storage in Zongtongka Reservoir: Simulation and Evaluation[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(2): 7-11 https://doi.org/10.11988/ckyyb.20191250
中图分类号: X828   

参考文献

[1] LOSKA K, WIECHULA D. Application of Principal Component Analysis for the Estimation of Source Heavy Metal Contamination in Surface Sediments from Rybnik Reservoir[J]. Chemosphere, 2003, 51(8): 723-733.
[2] LOHANI M B, SINGH A, RUPAINWAR D C. Seasonal Variations of Heavy Metal Contamination in River Gomti of Lucknow City Region[J]. Environmental Monitoring and Assessment, 2009, 147(1): 253-263.
[3] MUHAMMAD S, SHAH M T, KHAN S. Health Risk Assessment of Heavy Metals and Their Source Apportionment in Drinking Water of Kohistan Region, Northern Pakistan[J]. Microchemical Journal, 2011, 98(2): 334-343.
[4] 傅献彩,沈文霞,姚天扬.物理化学[M].4版. 北京:高等教育出版社,1993:885-978.
[5] 高广生,陈静生.我国主要河流悬浮物样品对镉离子的吸附作用[J].环境化学,1983(4):28-39.
[6] 金相灿,王桂林.环境科学情报[M]. 武汉:武汉水利水电出版社, 1986: 28.
[7] 王晓蓉,章慧珠,周爱和,等.金沙江颗粒物对金属的吸附[J].环境化学,1983(1):23-32.
[8] 罗先香,田 静,杨建强,等.黄河口潮间带表层沉积物重金属和营养元素的分布特征[J].生态环境学报, 2011,20(5): 892-897.
[9] VAROL M, SEN B. Assessment of Nutrient and Heavy Metal Contamination in Surface Water and Sediments of the Upper Tigris River, Turkey[J]. Catena, 2012, 92: 1-10.
[10] CHIOU C T, PETERS L J, FRIED V H. A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds[J]. Science, 1979, 206: 831-832.

PDF(4993 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map