随着废旧轮胎的日益剧增,回收利用率较低带来了严重的环保问题。利用废旧轮胎胶粉对红黏土进行改良,形成混合土。通过标准轻型击实试验、等效击实试验、直剪试验以及渗透试验,研究了不同胶粉掺量(0%,3%,8%,15%,25%)和不同含水量对混合土的击实特性、抗剪强度特性以及渗透性的影响。研究结果表明:①混合土的最大干密度比原状红黏土低,且胶粉的掺量越大,最大干密度越小;②胶粉掺量增大,标准击实试验的最优含水率增大,等效击实试验的最优含水率有减小趋势;③胶粉掺量不超过15%时,随着胶粉掺量增大,混合土的抗剪强度增大,内摩擦角增大,且出现应变硬化现象:④标准击实下,胶粉掺量为8%时,混合土的渗透速率变化不明显;但胶粉掺量增加到15%时,混合土的渗透速率显著提高,提升幅度达到97.3%。研究成果可为贵州地区今后废旧胶粉的循环利用和胶粉改良红黏土的工程运用提供参考。
Abstract
The low recycling rate of ever increasing waste tire has brought about severe environmental problems. In this research we prepared mixed soil samples by adding waste tire rubber powder into red clay, and examined the compaction strength, shear strength and permeability of the mixed soils with varied rubber powder content (0%, 3%, 8%, 15%, 25%) and water content via standard light compaction test, equivalent compaction test, direct shear test and penetration test. Results unveiled that (1) the maximum dry density of red clay mixed with rubber powder was lower than that of original red clay, and the maximum dry density decreased with the increase of rubber powder content. (2) With the growth of rubber powder content, the optimum water content augmented in standard compaction test but reduced in equivalent compaction test. (3) When rubber powder content was lower than 15%, both the shear strength and internal friction angle of the mixed soil climbed with the increase of rubber powder content, showing strain hardening features. (4) In standard compaction test, when rubber powder content was 8%, the permeability rate of mixed soil rarely changed, while when rubber powder content was 15%, the permeability rate soared with an increasing rate of 97.3%. The research findings offer reference for the recycling of waste rubber powder and the engineering application of modifying red clay with rubber powder.
关键词
红黏土 /
胶粉 /
击实特性 /
干密度 /
直剪试验 /
渗透性
Key words
red clay /
rubber powder /
compaction characteristics /
dry density /
direct shear test /
permeability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 佚 名.工信部拟加大废橡胶行业扶持力度[J].特种橡胶制品,2017,38(6):73.
[2] 颜椿钊,张 雁,郭利勇.废弃轮胎橡胶颗粒改良红黏土强度试验研究[J].内蒙古农业大学学报(自然科学版),2015,36(4):114-117.
[3] 何 俊,胡晓瑾,李 勇,等.废旧轮胎胶粉对高岭土变形和渗透性质的影响[J].工程地质学报,2017,25(1):65-72.
[4] 孙建刚. 废胶粉改性沥青的性能及机理研究[D].武汉:武汉科技大学,2014.
[5] 孙树林,魏永耀,张 鑫.废弃轮胎胶粉改良膨胀土的抗剪强度研究[J].岩石力学与工程学报,2009,28(增刊1):3070-3075.
[6] 穆 锐,黄质宏,郭建强,等.不同含水比贵阳原状红黏土CU三轴试验研究[J].水利水电技术,2019,50(7):189-194.
[7] 何 俊,李 勇,阮晓晨.废旧轮胎胶粉-黏土混合土的强度性质[J].岩石力学与工程学报,2015,34(增刊2):4366-4372.
[8] 李珊珊,李大勇.废旧轮胎橡胶颗粒与黏土混合土的剪切特性[J].raybet体育在线
院报,2017,34(7):99-105.
[9] 刘方成,吴孟桃,王海东.粒径比和配比对橡胶砂力学性能的影响研究[J].工程地质学报,2019,27(2):376-389.
[10]李 勇.废弃轮胎颗粒改性黏土衬垫性质研究[D].武汉:湖北工业大学,2015.
[11]张正甫. 废旧轮胎橡胶改性粉土的工程特性研究[D].南京:东南大学,2017.
[12]张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D].杭州:浙江大学,2018.
[13]高 武. 城市生活垃圾时间相关本构模型及填埋场服役性能研究[D].杭州:浙江大学,2018.
[14]朱建群,易 亮,龚 琰,等.贵州红黏土的胀缩性与水敏性研究[J].湖南科技大学学报(自然科学版),2016,31(4):35-39.
[15]何 俊,李 勇,阮晓晨,等.废旧轮胎胶粉-黏土混合土的击实性能[J].工程地质学报,2015,23(5):1013-1019.
[16]杨建芝. 废旧橡胶轮胎胶粉制备技术及其经济性研究[D].西安:长安大学,2014.
[17]陈 伟. 废旧橡胶轮胎低温粉碎工艺规程编制与设备的研发[D].杭州:浙江工业大学,2016.
[18]隋建波,向 东,牟鹏,等.废旧轮胎橡胶的常温粉碎及性能研究[J].橡胶工业,2012,59(1):33-37.
[19]孙玉海,张培新,刘剑洪.胶粉的生产利用现状及前景分析[J].再生资源研究,2004(1):24-27.
[20]刘玉强,殷晓玲.胶粉的生产方法[J].弹性体,2001(3):40-43.
[21]章敬泉.废旧轮胎的常温粉研究[D].北京:北京化工大学,2003.
[22]傅彦杰,王统濬,陈耀池,等.不同粒径橡胶粉的基本性能[J].中国橡胶,2000(2):19-20,22.
[23]侯 琨.废旧轮胎胶粉制备技术的研究[D].西安:长安大学,2012.
[24]李 伟,盖玉杰,王晓初.橡胶混凝土的力学性能试验[J].东北林业大学学报,2009,37(4):63-64.
[25]邹维列,谢 鹏,马其天,等.废弃轮胎橡胶颗粒改性膨胀土的试验研究[J].四川大学学报(工程科学版),2011,43(3):44-48.
[26]周 妮. 旧轮胎橡胶粉再生橡胶力学性能的研究[D].苏州:苏州科技大学,2017.
[27]杨茂军.胶粉表面处治对橡胶沥青中高温性能影响研究[J].公路,2019,64(2):33-38.
[28]PATIL U, VALDES J R, EVANS T M. Swell Mitigation with Granulated Tire Rubber [J].Journal of Materials in Civil Engineering, 2011, 23(5): 721-727.
[29]CENTIN H,FENER M,GUNAYDIN O.Geotechnical Properties of Tire-cohesive Clayey Soil Mixtures as a Fill Material[J]. Engineering Geology,2006,88(1/2):110-120.
[30]袁聚云,钱建固,张宏鸣,等.土质学与土力学[M].北京:人民交通出版社,2009.
基金
贵州省土木工程一流学科建设项目(QYNYL20170013);黔科合支撑项目(20182787)