模拟非饱和流的新型相对渗透系数模型

彭子茂, 黄震

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (7) : 115-119.

PDF(2724 KB)
PDF(2724 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (7) : 115-119. DOI: 10.11988/ckyyb.20190424
岩土工程

模拟非饱和流的新型相对渗透系数模型

  • 彭子茂1, 黄震2
作者信息 +

A Relative Permeability Model for Unsaturated Flow in Consideration of Hysteresis Effect

  • PENG Zi-mao1, HUANG Zhen2
Author information +
文章历史 +

摘要

相对渗透系数是非饱和土渗流特性研究普遍关注的重要内容。依据非饱和土体渗流滞后效应机理,考虑土体孔隙不均匀性引起滞后效应问题,采用分形理论和白汉金-达西定律,构建了能够反映非饱和流滞后效应的土-水特征曲线模型,并在此基础上导出了一个新型的非饱和流相对渗透系数模型。所提出的模型形式简单,仅包含1个参数。结合5组代表性的相对渗透系数试验数据,验证了所提出的模型的合理性,并与Assouline模型比较,结果表明所提出的模型拟合结果整体上要优于Assouline模型。

Abstract

Relative permeability coefficient is an important content in the study of seepage characteristics of unsaturated soils. In consideration of the hysteresis effect of unsaturated soil seepage caused by the non-uniformity of soil pores, a soil-water characteristic curve (SWCC) model reflecting the hysteresis effect of unsaturated flow is constructed by using the fractal theory and the Buckingham-Darcy law. On such basis, a model of relative permeability coefficient of unsaturated flow is derived. The proposed model is simple in form and contains only one parameter. The rationality of the model proposed in this paper is verified by five representative sets of test data of relative permeability coefficient. Compared with the Assouline model, the proposed model has superior fitting results.

关键词

非饱和土 / 毛细管系统 / 相对渗透系数 / 分形理论 / 白汉金-达西定律

Key words

unsaturated soil / capillary system / relative permeability coefficient / fractal theory / Buckingham-Darcy law

引用本文

导出引用
彭子茂, 黄震. 模拟非饱和流的新型相对渗透系数模型[J]. raybet体育在线 院报. 2020, 37(7): 115-119 https://doi.org/10.11988/ckyyb.20190424
PENG Zi-mao, HUANG Zhen. A Relative Permeability Model for Unsaturated Flow in Consideration of Hysteresis Effect[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(7): 115-119 https://doi.org/10.11988/ckyyb.20190424
中图分类号: TU442   

参考文献

[1] 徐炎兵,韦昌富,陈 辉,等.任意干湿路径下非饱和岩土介质的土水特征关系模型[J].岩石力学与工程学报,2008, 27(5):1046-1052.
[2] 李 幻,韦昌富,陈 辉,等.孔隙介质毛细滞回简化模型研究[J].岩土力学,2011,32(9):2635-2639.
[3] 马田田,韦昌富,陈 盼,等.非饱和土毛细滞回与变形耦合弹塑性本构模型[J].岩土力学,2012,33(11):3263-3270.
[4] 徐永福,黄寅春.分形理论在研究非饱和土力学性质中的应用[J].岩土工程学报,2006,28(5):635-638.
[5] 陈 盼,韦昌富,魏厚振,等.残留含气量影响的非饱和多孔介质流动过程[J].岩石力学与工程学报,2013, 32(7):1426-1433.
[6] 张国萍,王 林,曹子君,等.考虑不确定性的土水特征曲线模型确定方法比较研究[J].自然灾害学报,2018, 27(4):151-158.
[7] 刘星志.土-水特征曲线的全吸力范围试验及微观理论研究[D].南昌:南昌大学,2018.
[8] VAN GENUCHTEN M T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J]. Soil Science Society of America Journal,1980,44(5): 892-898.
[9] MUALEM Y, DAGAN G. A Dependent Domain Model of Capillary Hysteresis[J]. Water Resources Research, 1975, 11(3): 452-460.
[10]MUALEM Y. Anisotropy of Unsaturated Soils[J]. Soil Science Society of America Journal, 1984, 48(3):505-509.
[11]卢应发,陈高峰,罗先启,等.土-水特征曲线及其相关性研究[J].岩土力学,2008,29(9):2481-2486.
[12]YU B, LI J, LI Z, et al. Permeabilities of Unsaturated Fractal Porous Media[J]. International Journal of Multiphase Flow, 2003, 29(10): 1625-1642.
[13]黄 义,张引科.非饱和土土-水特征曲线和结构强度理论[J].岩土力学,2002,23(3):268-271,277.
[14]BOUSFIELD D W, KARLES G. Penetration into Three-dimensional Complex Porous Structures[J]. Journal of Colloid & Interface Science, 2004, 270(2): 396-405.
[15]郁伯铭,姚凯伦.多孔介质中的分形与输运[J].物理,1994,23(5):281-284.
[16]徐 鹏,李翠红,柳海成,等.多尺度多孔介质有效气体输运参数的分形特征[J].地球科学,2017,42(8):1373-1378.
[17]郁伯铭.多孔介质输运性质的分形分析研究进展[J].力学进展,2003,33(3):333-346.
[18]BUCKINGHAM E. Studies on the Movement of Soil Moisture[J].U.S.Department of Agriculture, Bureau of Soils Bulletin, 1907, 38: 8-61.
[19]ASSOULINE S. A Model for Soil Relative Hydraulic Conductivity Based on the Water Retention Characteristic Curve[J]. Water Resources Research, 2001, 37(2): 265-271.

基金

湖南省自然科学基金项目(2018JJ2431);湖南省交通运输厅科技计划项目(201936);湖南省教育厅课题(ZJGB2019091)

PDF(2724 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map