基于植被混凝土的不同优势物种根际土壤养分及微生物量化学计量特征差异

程虎, 许文年, 罗婷, 向瀚宇, 夏露, 赵冰琴, 夏栋

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (6) : 55-61.

PDF(4833 KB)
PDF(4833 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (6) : 55-61. DOI: 10.11988/ckyyb.20190171
水土保持与生态建设

基于植被混凝土的不同优势物种根际土壤养分及微生物量化学计量特征差异

  • 程虎1,2, 许文年1,2,3, 罗婷1,2, 向瀚宇3, 夏露1,2, 赵冰琴1,2,3, 夏栋1,2,3
作者信息 +

Stoichiometric Differences of Nutrients and Microbial Biomass in Rhizosphere Soil among Different Dominant Species in Vegetation-growing Concrete

  • CHENG Hu1,2, XU Wen-nian1,2,3, LUO Ting 1,2, XIANG Han-yu3, XIA Lu1,2, ZHAO Bing-qin1,2,3, XIA Dong1,2,3
Author information +
文章历史 +

摘要

为探索不同优势物种对植被混凝土基材肥力的影响,采集向家坝植被混凝土3种优势物种(葛藤(PL)、荩草(AH)、双花草(PA))根际(R)和非根际(N-R)土壤,对土壤的养分和微生物生态化学计量比进行研究。结果表明:①各植物根际土壤养分和微生物量高于非根际,根际表现出明显的富集作用。葛藤对除速效磷外的其他养分的富集作用均较荩草和双花草明显,大部分养分富集作用在荩草和双花草之间差异不显著。葛藤非根际土壤养分和微生物活性低于荩草和双花草。②各植物的碳、氮、磷比都表现为根际土壤大于非根际土壤,葛藤根际土壤C/N和C/P大于荩草和双花草。3种植物根际土壤MBC/MBN差异不大。荩草和双花草非根际MBC/MBN和MBC/MBP均显著大于葛藤(P<0.05)。葛藤根际土壤MBC/MBP和MBN/MBP显著大于荩草和双花草(P<0.05)。相对中国和世界土壤平均水平,3种植物根际和非根际土壤具有较高的C/N和MBC/MBN,C/P、N/P、MBC/MBP和MBN/MBP均较低。③相关性分析表明,MBN、有机碳、总氮、总磷和速效氮之间具有极显著的正相关关系(P<0.01),但MBP只与速效磷有显著的正相关关系(P<0.01)。综合分析表明植物对植被混凝土基材养分固存起到了积极的作用,葛藤根际富集能力较强。此外,基材磷素含量过高,而氮素含量缺乏,基材养分配比不均衡。

Abstract

In order to examine the influence of dominant species on the fertility of vegetation-growing concrete substrate, we collect the rhizosphere (R) and non-rhizosphere (N-R) soils of three dominant species (Pueraria lobata (PL), Arthraxon hispidus (AH) and Pennisetum alopecuroides (PA)) from the vegetation-growing concrete at Xiangjiaba and investigate the stoichiometric ratio of soil nutrient and microbial biomass. Results reveal that: (1) The rhizosphere, showing obvious enrichment, has higher content of nutrient and microbial biomass regardless of vegetation species than non-rhizosphere. The enrichment of nutrients except from available phosphorus in PL is more evident than that in AH and PA, and no significant difference is observed between AH and PA for most nutrient enrichment. The non-rhizosphere soil nutrient and microbial activity of PL are lower than those of AH and PA. (2) The ratios of carbon (C), nitrogen (N) and phosphorus (P) of rhizosphere soil of different plants are higher than those of non-rhizosphere soil, and in particular, the C/N and C/P in rhizosphere of PL are higher than those of AH and PA. There is no significant difference in MBC/MBN of rhizosphere soils among the three plants. The MBC/MBN and MBC/MBP in non-rhizosphere soil of AH and PA are significantly higher than those of PL (P<0.05); whereas the MBC/MBP and MBN/MBP in rhizosphere soil of PL are significantly higher than those of AH and PA (P<0.05). Compared with the average soil level in China and abroad, the C/N and MBC/MBN in the rhizosphere and non-rhizosphere soils of the three plants are higher, while C/P, N/P, MBC/MBP and MBN/MBP are lower. (3) Correlation analysis demonstrates that there is a very significant positive correlation among MBN, organic carbon, total nitrogen, total phosphorus and available nitrogen (P<0.01). However, MBP has a significant positive correlation only with available phosphorus (P<0.01). Comprehensive analysis indicates a positive role of plant in the nutrient storage of the vegetation-growing concrete substrate and a stronger nutrient enrichment ability in the rhizosphere of PL. In addition, an excessively high P content and inadequate amount of N imply the imbalanced proportion of nutrients in the substrate.

关键词

植被混凝土 / 生态修复 / 根际 / 土壤化学计量特征 / 微生物化学计量特征

Key words

vegetation-growing concrete / ecological restoration / rhizosphere / soil stoichiometry / microbial stoichiometry

引用本文

导出引用
程虎, 许文年, 罗婷, 向瀚宇, 夏露, 赵冰琴, 夏栋. 基于植被混凝土的不同优势物种根际土壤养分及微生物量化学计量特征差异[J]. raybet体育在线 院报. 2020, 37(6): 55-61 https://doi.org/10.11988/ckyyb.20190171
CHENG Hu, XU Wen-nian, LUO Ting, XIANG Han-yu, XIA Lu, ZHAO Bing-qin, XIA Dong. Stoichiometric Differences of Nutrients and Microbial Biomass in Rhizosphere Soil among Different Dominant Species in Vegetation-growing Concrete[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(6): 55-61 https://doi.org/10.11988/ckyyb.20190171
中图分类号: S151.9   

参考文献

[1] RILEY D,BARBER S A. Bicarbonate Accumulation and pH Changes at the Soybean (Glycine max (L.) Merr.) Root-Soil Interface[J]. Soil Science Society of America Journal,1969,33(6): 905-908.
[2] 郁珊珊,王 浩,王亚军. 南京市不同园林植物根际土壤养分和重金属富集特征[J]. 水土保持学报,2016,30(3):120-127.
[3] 罗 萌,刘长海. 西安市不同园林植物根际效应及生态化学计量特征研究[J]. 西北植物学报,2016,36(4):766-776.
[4] 李欣玫,左易灵,薛子可,等. 不同荒漠植物根际土壤微生物群落结构特征[J]. 生态学报,2018,38(8):2855-2863.
[5] 杨 阳,刘秉儒. 荒漠草原不同植物根际与非根际土壤养分及微生物量分布特征[J]. 生态学报,2015,35(22):7562-7570.
[6] 邱 权,李吉跃,王军辉,等. 西宁南山4种灌木根际和非根际土壤微生物、酶活性和养分特征[J]. 生态学报,2014,34(24):7411-7420.
[7] 刘 钊,魏天兴,朱清科,等. 黄土丘陵沟壑区典型林地土壤微生物、酶活性和养分特征[J]. 土壤,2016,48(4):705-713.
[8] NIE M,ZHANG X D,WANG J Q,et al. Rhizosphere Effects on Soil Bacterial Abundance and Diversity in the Yellow River Deltaic Ecosystem as Influenced by Petroleum Contamination and Soil Salinization[J]. Soil Biology & Biochemistry,2009,41(12): 2535-2542.
[9] QUIGG A,IRWIN A J,FINKEL Z V. Evolutionary Inheritance of Elemental Stoichiometry in Phytoplankton[J]. Proceedings of the Royal Society B: Biological Sciences,2010,278(1705): 526-534.
[10]程建中,李心清,刘钟龄,等. 中国北方草地植物群落碳、氮元素组成空间变化及其与土壤地球化学变化的关系[J]. 地球化学,2008,37(3):265-274.
[11]MAZZARINO M J,SZOTT L,JIMENEZ M. Dynamics of Soil Total C and N,Microbial Biomass,and Water-soluble C in Tropical Agroecosystems[J]. Soil Biology & Biochemistry,1993,25(2): 205-214.
[12]LI X B,LI R H,LI G Q,et al. Human-induced Vegetation Degradation and Response of Soil Nitrogen Storage in Typical Steppes in Inner Mongolia, China[J]. Journal of Arid Environments,2016,124(1): 80-90.
[13]HELMSTEDT K J,POTTS M D. Valuable Habitat and Low Deforestation Can Reduce Biodiversity Gains from Development Rights Markets[J]. Journal of Applied Ecology,2018,55(4):1692-1700.
[14]HUSS M. Present and Future Contribution of Glacier Storage Change to Runoff from Macroscale Drainage Basins in Europe[J]. Water Resources Research,2017,47(7), doi: 10.1029/2007WR010299.
[15]GUITTONNY-LARCHEVÊQUE M,BUSSIÈRE B,PEDNAULT C. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation[J]. Journal of Environmental Quality,2016,45(3): 1036-1045.
[16]ALAM M K,MIRZA M R,MAUGHAN O E. Constraints and Opportunities in Planning for the Wise Use of Natural Resources in Developing Countries: Example of a Hydropower Project[J]. Environmental Conservation,1995,22(4):352-358.
[17]周明涛,许文年,夏 栋. 向家坝水电站工程扰动区不同类型边坡土壤酸碱度与肥力分析[J]. 应用生态学报,2010,21(4):1031-1037.
[18]吕 晶,高甲荣,王 颖,等. 不同护坡植物对岸坡土壤性质的影响及效应分析[J]. 水土保持研究,2010,17(3):101-104.
[19]李建兴,何丙辉,谌 芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响[J]. 生态学报,2013,33(5):1535-1544.
[20]LIU D X,XU W N,CHENG Z L,et al. Improvement Test on Frost Resistance of Vegetation-concrete and Engineering Application of Test Fruitage[J]. Environmental Earth Sciences,2012,69(1):161-170.
[21]WU B,XIA Z Y,ZHANG L L,et al. A Suggested Fractionation of Inorganic Phosphorus at Various Types of Slope Soil under Different Restoration Modes[J]. Advanced Materials Research,2013,726/731:3799-3802.
[22]吴 彬,夏振尧,赵 娟,等. 植被混凝土基材微生物活性对不同水泥含量的响应[J]. 水土保持通报,2014,34(3): 6-9.
[23]夏振尧. 向家坝水电站扰动边坡人工植被群落初期演替过程与稳定性研究[D]. 武汉:武汉大学,2010.
[24]RILEY D,BARBER S A. Salt Accumulation at the Soybean (Glycine Max. (L.) Merr.) Root-Soil Interface[J]. Soil Science Society of America Journal,1970,34(1):154-155.
[25]劳家柽. 土壤农化分析手册[M]. 北京:农业出版社,1988.
[26]洪常青,聂艳丽. 根系分泌物及其在植物营养中的作用[J]. 生态环境,2003,12(4):508-511.
[27]李从娟,李 彦,马 健,等. 干旱区植物根际土壤养分状况的对比研究[J]. 干旱区地理,2011,34(2):222-228.
[28]ROUATT J W,KATZNELSON H,PAYNE T M B. Statistical Evaluation of the Rhizosphere Effect[J]. Soil Science Society of America Journal,1960,24(4): 271-273.
[29]郑 华,欧阳志云,赵同谦,等. 不同森林恢复类型对土壤生物学特性的影响[J]. 应用与环境生物学报,2006,12(1):36-43.
[30]杨 刚,何寻阳,王克林,等. 不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J]. 土壤通报,2008,39(1):189-191.
[31]李显刚,姚 拓,王小利,等. 贵州黄壤地区葛藤根际溶磷细菌溶磷、分泌IAA及其它特性研究[J]. 草原与草坪,2012,32(1):18-23.
[32]从怀军,成 毅,安韶山,等. 黄土丘陵区不同植被恢复措施对土壤养分和微生物量C、N、P的影响[J]. 水土保持学报,2010,24(4):217-221.
[33]任豫霜,朱 丹,姜 伟,等. 酸性土壤中接种耐酸根瘤菌对豆科植物根际微生态的影响[J]. 植物营养与肥料学报,2017,23(4):1077-1088.
[34]罗素梅. 闽西北桉树人工林可持续经营技术研究[D]. 福建:福建农林大学,2010.
[35]刘红梅,武爱兵,崔立明,等. 植物凋落物分解对土壤化学性质的影响[J]. 河北林果研究,2015,30(3):232-235.
[36]TIAN H Q,CHEN G S,ZHANG C,et al. Pattern and Variation of C:N:P Ratios in China’s Soils: A Synthesis of Observational Data[J]. Biogeochemistry,2010,98(1/2/3):139-151.
[37]CLEVELAND C,LIPTZIN D. C:N:P Stoichiometry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass?[J]. Biochemistry,2007,85(3):235-252.
[38]TISCHER A,POTTHAST K,HAMER U. Land-use and Soil Depth Affect Resource and Microbial Stoichiometry in a Tropical Mountain Rainforest Region of Southern Ecuador[J]. Oecologia,2014,175(1):375-393.
[39]BREUER L, HUISMAN J A, KELLER T, et al. Impact of a Conversion from Cropland to Grassland on C and N Storage and Related Soil Properties: Analysis of a 60-Year Chronosequence[J]. Geoderma, 2006,133(1):6-18.

基金

国家重点研发计划项目(2017YFC0504902-04);国家自然科学基金项目(51678348);三峡库区生态环境教育部工程研究中心开放基金(KF2016-04)

PDF(4833 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map