不同环境胁迫因子对藻类分子生物学特性的影响研究进展

魏静, 林莉, 潘雄, 刘敏, 李明

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (4) : 14-24.

PDF(8152 KB)
PDF(8152 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (4) : 14-24. DOI: 10.11988/ckyyb.20190062
水资源与环境

不同环境胁迫因子对藻类分子生物学特性的影响研究进展

  • 魏静1,2,3, 林莉1,2, 潘雄1,2, 刘敏1,2, 李明3
作者信息 +

Research Progress about the Effects of Different Environmental Stress Factors on Algae in Molecular Biology

  • WEI Jing1,2,3, LIN Li1,2, PAN Xiong1,2, LIU Min1,2, LI Ming3
Author information +
文章历史 +

摘要

藻类是水生态系统稳定和生物多样性维持的重要因素,其在生长过程中会受到多种环境因子的胁迫,从而影响正常生命活动。针对不同的藻种(蓝藻、绿藻、硅藻、褐藻等),分析了气象因子(包括UV-B、干旱、高温等)、污染物(重金属、纳米材料、有机污染物、稀土元素等)、水体共存物(水体颗粒物、超标营养盐、H2O2等)3类环境胁迫因子对不同藻种生命活动的影响,并从藻类的抗氧化酶活性变化、细胞超微结构改变、DNA损伤等方面系统综述了不同环境胁迫因子对藻类分子生物学特性的影响。研究表明:藻细胞生长过程中,会形成一套清除ROS的抗氧化防御系统,它可以在藻体受到活性氧攻击时,减轻机体损伤,但当活性氧的产生速度超出抗氧化防御系统的清除能力时,过量的活性氧会对藻体造成氧化胁迫,导致藻细胞蛋白质功能丧失、超微结构受损、DNA损伤与突变,严重时会引起细胞代谢紊乱等,最终抑制藻体的生长发育。研究成果可为进一步系统探究逆境胁迫下藻类的生长状况及其分子生物学特性的变化提供依据。

Abstract

Algae always plays a key role in stabilizing the balance and the biodiversity of aquatic ecosystem. However, during the growth of algae, the normal life activities are always susceptible to various environmental factors. In this paper, we analyzed the effects of three types of environmental stress factors including meteorological factors (UV-B, drought, high temperature, and etc.), pollutants (heavy metals, nanomaterials, organic pollutants, rare earth elements, and etc.), and water body coexisting matter (water particles, excessive nutrients, H2O2, and etc.) on the life activities of different algae species (Cyanophyta, Chlorophyta, Bacillariophyta and Phaeophyta). The effects of different environmental stress factors on the biological characteristics of algae were systematically reviewed from the changes of antioxidant enzyme activities, cell ultrastructural changes and DNA damage in algae. Results demonstrated that during the growth of algal cells, a set of ROS scavenging antioxidant defense system was formed, which reduced the body damage of algal when attacked by reactive oxygen species; nevertheless, when the production speed of reactive oxygen species exceeded the scavenging ability of antioxidant defense system, excessive reactive oxygen species would cause oxidative stress to the algal body, resulting in the loss of protein function, ultrastructural damage, DNA damage and mutation, and in particular when serious, would cause cell metabolism disorder, and ultimately inhibit the growth and development of algae. The results offer a basis for further study on the growth of algae and the changes of its molecular biological characteristics under stress.

关键词

藻类 / 环境胁迫因子 / 抗氧化酶活性 / DNA损伤 / 细胞超微结构

Key words

algae / environmental stress factors / antioxidant enzyme activity / DNA damage / cell's ultrastructure

引用本文

导出引用
魏静, 林莉, 潘雄, 刘敏, 李明. 不同环境胁迫因子对藻类分子生物学特性的影响研究进展[J]. raybet体育在线 院报. 2020, 37(4): 14-24 https://doi.org/10.11988/ckyyb.20190062
WEI Jing, LIN Li, PAN Xiong, LIU Min, LI Ming. Research Progress about the Effects of Different Environmental Stress Factors on Algae in Molecular Biology[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(4): 14-24 https://doi.org/10.11988/ckyyb.20190062
中图分类号: X522   

参考文献

[1] REYNOLDS C S. The Ecology of Freshwater Phytoplankton [M]. New York: Cambridge University Press,1984:157-183.
[2] 时忠杰, 胡哲森, 李荣生. 水分胁迫与活性氧代谢[J]. 山地农业生物学报, 2002, 21(2):140-145.
[3] MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive Oxygen Gene Network of Plants[J]. Trends in Plant Science, 2004, 9(10):490-498.
[4] 张容芳,唐东山,刘 飞.藻类抗氧化系统及其对逆境胁迫的响应[J].环境科学与管理,2011,36(12):21-25.
[5] TAKEDA T, YOKOTA A, SHIGEOKA S. Resistance of Photosynthesis to Hydrogen Peroxide in Algae[J]. Plant and Cell Physiology, 1995, 36(6): 1089-1095.
[6] 薛林贵, 徐世健, 李师翁, 等. 螺旋藻对增强的UV-B胁迫的响应[J]. 水生生物学报,2007,31(2):201-207.
[7] TIAN J, YU J. Changes in Ultrastructure and Responses of Antioxidant Systems of Algae (Dunaliella salina) During Acclimation to Enhanced Ultraviolet-B Radiation[J]. Journal of Photochemistry & Photobiology B Biology, 2009, 97(3): 152-160.
[8] 蒋霞敏, 翟兴文, 王 丽, 等. 雨生红球藻对紫外辐射的生理适应及超微结构变化[J]. 水产学报, 2003, 27(2):105-112.
[9] MEINDL U, LUTZ C. Effects of UV Irradiation on Cell Development and Ultrastructure of the Green Alga Micrasterias[J]. Journal of Photochemistry and Photobiology B Biology, 1996, 36(3): 285-292.
[10]WU H, GAO K, WU H. Responses of a Marine Red Tide Alga Skeletonema costatum (Bacillariophyceae) to Long-term UV Radiation Exposures[J]. Journal of Photochemistry and Photobiology B Biology, 2009, 94(2): 82-86.
[11]涂 勃, 袁悟飚, 徐兴莲, 等.不同混合速率下阳光UV辐射对假微型海链藻PSⅡ功能的影响[J].植物科学学报,2018,36(2):300-308.
[12]刘成圣, 唐学玺, 王艳玲, 等. UV-B辐射对三角褐指藻DNA伤害的研究[J]. 渔业科学进展, 2002,23(2):45-48.
[13]LI L X, ZHAO J Q, TANG X X, et al. Ultraviolet Irradiation Induced Oxidative Stress and Response of Antioxidant System in an Intertidal Macroalgae Corallina officinalis L.[J]. Journal of Environmental Sciences, 2010, 22(5): 716-722.
[14]ZHU L,XIAO H,WANY et al.Physiological Responses of Macroalga Gracilaria Lemaneiformis(Rhodophyta) to UV-B Radiation Exposure[J].Chinese Journal of Oceanology and Limnology,2015,33(2):389-399.
[15]李丽霞, 赵 妍, 周 斌, 等. UV-B辐射对大型海藻鼠尾藻抗氧化酶活性及同工酶谱的影响[J]. 中国海洋大学学报(自然科学版), 2009, 39(6):1246-1250.
[16]梁文裕 , 焦广飞 , 周有文 , 等. 干旱胁迫条件下发菜Ferritin差异表达与基因克隆[J]. 植物科学学报, 2012, 30(1):72-78.
[17]张爱红, 邱保胜, 刘志礼. 陆生念珠藻的耐干旱机制[J]. 西北植物学报, 2003, 23(3):516-521.
[18]赵丽英,邓西平,山 仑. 活性氧清除系统对干旱胁迫的响应机制[J]. 西北植物学报,2005,25(2):413-418.
[19]KIM Y, GARBARY D J. Photosynthesis in Codium fragile (Chlorophyta) from a Nova Scotia Estuary: Responses to Desiccation and Hyposalinity[J]. Marine Biology, 2007, 151(1): 99-107.
[20]KUMAR M, GUPTA V, TRIVEDI N, et al. Desiccation Induced Oxidative Stress and Its Biochemical Responses in Intertidal Red Alga Gracilaria corticate (Gracilariales, Rhodophyta)[J]. Environmental and Experimental Botany, 2011, 72(2): 194-201.
[21]TANAKA N, NAKAMOTO H. HtpG is Essential for the Thermal Stress Management in Cyanobacteria[J]. FEBS Letters, 1999, 458(2): 117-123.
[22]FORK D C,SEN A,WILLIAMS W P.The Relationship between Heat-stress and Photobleaching in Green and Blue-green Algae[J].Photosynthesis Research,1987,11(1): 71-87.
[23]NOUE N, TAIRA Y, EMI T, et al. Acclimation to the Growth Temperature and the High-temperature Effects on Photosystem II and Plasma Membranes in a Mesophilic Cyanobacterium, Synechocystis sp. PCC6803[J]. Plant Cell Physiology, 2001, 42(10): 1140-1148.
[24]李 婷, 景元书, 韩 玮. 不同磷条件下高温胁迫对铜绿微囊藻增殖的影响及其恢复[J]. 环境工程学报, 2015,9(10):4780-4788.
[25]周亚莉, 张学成. 节旋藻野生型藻株与直线型突变藻株对高温胁迫的生理响应[J]. 中国海洋大学学报(自然科学版), 2007(1):121-126.
[26]吴沛沛, 饶本强, 郝宗杰, 等. 高温培养条件下爪哇伪枝藻的生理特性和超微结构特征[J]. 水生生物学报, 2012, 36(4):735-743.
[27]郝林华, 孙丕喜, 王能飞,等. 南极冰藻Chlorophyceae L4抗氧化酶活性对温度升高的响应[J]. 渔业科学进展, 2009, 30(3):97-102.
[28]侯和胜, 何文君, 李洪艳, 等. 高温胁迫对条斑紫菜丝状体的生长和生理影响[J]. 辽宁师范大学学报(自然科学版), 2008, 31(4):487-490.
[29]王 萌,佟少明,侯和胜.高温胁迫对裙带菜配子体的生长和生理影响[J].天津农业科学,2010,16(3):24-26.
[30]WANG H Y, YANG F, CHEN S J, et al. Physiological Responses to Cd2+ Stress in Spirulina platensis[J]. Marine Environmental Science, 2007, 26(2): 151-153.
[31]张小兰, 施国新, 徐 楠, 等. Hg2+、Cd2+对轮藻部分生理生化指标的影响[J]. 南京师大学报:自然科学版, 2002, 25(1):38-43.
[32]倪利晓, 陈春明, 马艳艳. 镉胁迫对铜绿微囊藻的抑制作用及营养盐浓度对其的减缓效应[J]. 水资源保护, 2017(6):100-105.
[33]KONDZIOR P, BUTAREWICZ A. Effect of Heavy Metals (Cu and Zn) on the Content of Photosynthetic Pigments in the Cells of Algae Chlorella Vulgaris[J]. Journal of Ecological Engineering, 2018, 19(5) : 1-9.
[34]葸玉琴, 任春燕, 朱巧巧, 等. Cr3+胁迫对小球藻生理生化特性的影响[J]. 生态毒理学报,2017, 12(1):228-233.
[35]WONG S L,NAKAMOTO L,WAINWRIGHT J F. Identification of Toxic Metals in Affected Algal Cells in Assays of Wastewaters[J]. Journal of Applied Phycology,1994,6(4): 405-414.
[36]CHENG J F, QIU H C, CHANG Z Y, et al. The Effect of Cadmium on the Growth and Antioxidant Response for Freshwater Algae Chlorella vulgaris[J]. Springer Plus, 2016, 5(1): 1-8.
[37]EL-NAGGAR A H, SHEIKH H M. Response of the Green Microalga Chlorella vulgaris to the Oxidative Stress Caused by Some Heavy Metals[J]. Life Science Journal, 2014, 11(10): 1349-1357.
[38]ROCCHETTA I, LEONARDI P I, AMADO FILHO G M, et al. Ultrastructure and X-ray Microanalysis of Euglena gracilis (Euglenophyta) under Chromium Stress[J]. Phycologia, 2007, 46(3): 300-306.
[39]BABU M Y, PALANIKUMAR L, NAGARANI N, et al. Cadmium and Copper Toxicity in Three Marine Macroalgae: Evaluation of the Biochemical Responses and DNA Damage[J]. Environmental Science & Pollution Research, 2014, 21(16): 9604-9616.
[40]尹海川, 柳清菊, 林 强, 等. 纳米TiO2负载贵金属Pd抑制蓝藻的生长[J]. 西北植物学报, 2005,25(9):1884-1887.
[41]赵 建, 曹雪松, 代燕辉, 等. 溶解有机质影响下氧化铜纳米颗粒对藻细胞的致毒机制[C]. 武汉:中国毒理学会第七次全国毒理学大会暨第八届湖北科技论坛论文集,2015:256.
[42]CHEN L,ZHOU L,LIU Y,et al.Toxicological Effects of Nanometer Titanium Dioxide(nano-TiO2) on Chlamydomonas reinhardtii[J].Ecotoxicology & Environmental Safety,2012,84(10):155-162.
[43]NAM S H, KWAK J, AN Y J. Quantification of Silver Nanoparticle Toxicity to Algae in Soil via Photosynthetic and Flow-cytometric Analyses[J]. Scientific Reports, 2018, 8(1): 1-12.
[44]HAZEEM L J, BOUOUDINA M, DEWAILLY E, et al. Toxicity Effect of Graphene Oxide on Growth and Photosynthetic Pigment of the Marine Alga Picochlorum sp. during Different Growth Stages[J]. Environmental Science & Pollution Research, 2017, 24(4): 1-9.
[45]傅 凤, 刘振乾, 陈传红. 纳米铜粉对浮游植物生长的影响[J]. 生态科学,2007,26(2):126-130.
[46]HU X, LU K, MU L, et al. Interactions between Graphene Oxide and Plant Cells: Regulation of Cell Morphology, Uptake, Organelle Damage, Oxidative Effects and Metabolic Disorders[J]. Carbon,2014,80(1):665-676.
[47]李雅洁, 王 静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应[J]. 农业环境科学学报,2013,32(6):1122-1127.
[48]GONG N, SHAO K S, LI G Y, et al. Nickel Oxide Nanoparticles Induce Oxidative Stress and Morphological Changes on Marine Chlorella vulgaris[J]. Advanced Materials Research,2014,955-959(11):956-960.
[49]LI F, LIANG Z, ZHENG X, et al. Toxicity of Nano-TiO2 on Algae and the Site of Reactive Oxygen Species Production[J]. Aquatic Toxicology, 2015, 158: 1-13.
[50]侯东颖, 冯 佳, 谢树莲. 纳米二氧化钛胁迫对普生轮藻的毒性效应[J]. 环境科学学报,2012,32(6):1481-1486.
[51]彭金良, 严国安, 沈国兴, 等. α-萘酚胁迫对普通小球藻生长及抗氧化酶活性的影响[J]. 武汉大学学报(理学版),2001,47(4):449-452.
[52]LEI A, HU Z, WONG Y, et al. Antioxidant Responses of Microalgal Species to Pyrene[J]. Journal of Applied Phycology, 2006,18(1):67-78.
[53]ZHAO Y, WANG Y, LI Y, et al. Response of Photosynthesis and the Antioxidant Defense System of Two Microalgal Species (Alexandrium minutum and Dunaliella salina ) to the Toxicity of BDE-47[J]. Marine Pollution Bulletin, 2017, 124(1): 459-469.
[54]蔡恒江, 唐学玺, 张培玉, 等. UV-B辐射和久效磷对三角褐指藻DNA共同伤害效应[J]. 中国海洋大学学报(自然科学版), 2004,34(6):993-996.
[55]张 琼, 伍 琴, 高香玉, 等. 二溴联苯醚对纤细裸藻的生态遗传毒性效应[J]. 中国环境科学, 2010, 30(6):833-838.
[56]姜 蕾, 陈书怡, 尹大强. 四环素对铜绿微囊藻光合作用和抗氧化酶活性的影响[J]. 生态与农村环境学报, 2010, 26(6):564-567.
[57]WANG M, ZHANG Y, GUO P. Effect of Florfenicol and Thiamphenicol Exposure on the Photosynthesis and Antioxidant System of Microcystis flos-aquae[J]. Aquatic Toxicology, 2017, 186: 67-76.
[58]聂湘平,鹿金雁,李 潇,等. 诺氟沙星(Norfloxacin)对蛋白核小球藻(Chlorella pyrenoidosa)生长及抗氧化酶活性的影响[J]. 生态毒理学报,2007,2(3):327-332.
[59]IMRAN B K M, CHO M G. The Effect of Kanamycin and Tetracycline on Growth and Photosynthetic Activity of Two Chlorophyte Algae[J]. BioMed Research International, 2016, doi: 10.1155/2016/5656304.
[60]陈柳芳. 三种喹诺酮类抗生素对斜生栅藻的毒性效应[D]. 长春:东北师范大学, 2010.
[61]王应军, 伍 钧, 金航标, 等. 稀土元素钕对铜绿微囊藻生长和生理特性的影响[J]. 农业环境科学学报,2010,29(7):1261-1267.
[62]余 游, 冉奎林, 王应军, 等. 钕对铜绿微囊藻生长及生理特性的影响[J]. 现代农业科技,2011(17):239-241,243.
[63]刘志伟, 张 晨, 郭 勇. 镧对转基因鱼腥藻生长和外源基因表达的影响[J]. 稀土,2004,25(5):30-32.
[64]李子杰, 姜文君, 于 明, 等. LaCl3对轮藻光合色素含量及抗氧化酶活性的影响[J]. 中国稀土学报,2006, 24(增刊1):192-195.
[65]梅志刚, 柯 志, 王菊芳. 稀土元素对隐甲藻生长和产DHA的影响[J]. 食品工业科技,2011,32(7):157-159.
[66]王美仙. 淡水微藻对水体颗粒物与抗生素及其复合污染胁迫的响应研究[D].泉州:华侨大学, 2017.
[67]侯秀富, 郭沛涌, 张华想, 等. 水体悬浮颗粒物对斜生栅藻生理生化及光合活性的影响[J]. 环境科学学报,2013,33(5):1446-1457.
[68]高桂玲, 杨雪薇, 成家杨. 氨氮质量浓度和温度对雨生红球藻生长特性的影响[J]. 食品与生物技术学报,2016,35(2):136-143.
[69]邱昌恩, 况琪军, 刘国祥, 等. 不同氮浓度对绿球藻生长及生理特性的影响[J]. 中国环境科学,2005,25(4):408-411.
[70]董金利, 庄惠如, 占美怜, 等. 氮、磷营养盐对底栖硅藻的生长及生化组成影响[J]. 生物技术,2010,20(2):64-67.
[71]刘 炎 , 石小荣 , 崔益斌 , 等. 高浓度氨氮胁迫对纤细裸藻的毒性效应[J]. 环境科学, 2013, 34(11) : 4386-4391.
[72]AZIZULLAH A, RICHTER P, HäDER D P. Toxicity Assessment of a Common Laundry Detergent Using the Freshwater Flagellate Euglena gracilis.[J]. Chemosphere,2011,84(10):1392-1400.
[73]宋丽娜, 郑晓宇, 顾詠洁, 等.磷浓度对海洋小球藻叶绿素荧光及生长的影响[J]. 环境污染与防治, 2010,32(8):20-24.
[74]杨燕君, 许金铸, 吴忠兴, 等. 无机磷对多甲藻生长及叶绿素荧光的影响[J]. 西南大学学报(自然科学版),2017,39(8):26-33.
[75]SKURLATOV Y I, ERNESTOVA L S. The Impact of Human Activities on Freshwater Aquatic Systems[J]. Clean-Soil, Air, Water, 2010, 26(1): 5-12.
[76]COOPER W J, ZIKA R G. Photochemical Formation of Hydrogen Peroxide in Surface and Ground Waters Exposed to Sunlight[J]. Science, 1983, 220(4598): 711-712.
[77]DRBKOV M,ADMIRAAL W,MARSLEK B. Combined Exposure to Hydrogen Peroxide and Light:Selective Effects on Cyanobacteria,Green Algae, and Diatoms[J]. Environmental Science & Technology,2007,41(1): 309-314.
[78]QIAN H F, YU S Q, SUN Z Q, et al. Effects of Copper Sulfate, Hydrogen Peroxide and N-phenyl-2-naphthylamine on Oxidative Stress and the Expression of Genes Involved Photosynthesis and Microcystin Disposition in Microcystis aeruginosa[J]. Aquatic Toxicology, 2010, 99(3): 405-412.
[79]郭莉莎. H2O2压力与氧限制下铜绿微囊藻PCC7806的细胞程序性死亡[D]. 厦门:厦门大学,2011.
[80]LU I, SUNG M S, LEE T M, et al. Salinity Stress and Hydrogen Peroxide Regulation of Antioxidant Defense System in Ulva Fasciata[J]. Marine Biology, 2006, 150(1): 1-15.
[81]GANINID,HOLLNAGEL H C,COLEPICOLO P,et al. Hydrogen Peroxide and Nitric Oxide Trigger Redox-related Cyst Formation in Cultures of the Dinoflagellate Lingulodinium polyedrum[J]. Harmful Algae,2013,27: 121-129.
[82]DUMMERMUTHA L, KARSTEN U, FISCH K M, et al. Responses of Marine Macroalgae to Hydrogen-peroxide Stress[J]. Journal of Experimental Marine Biology & Ecology, 2003, 289(1): 103-121.

基金

国家自然科学基金项目(51309019);中央级公益性科研院所基本科研业务费项目(CKSF2017062/SH);中国科协青年人才托举工程项目(2015QNRC001)

PDF(8152 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map