为分析非同源炸药包起爆后应力波叠加过程的破岩特性,以同时起爆相同球状药包为对象建立物理模型,根据所定义的破岩角β分析爆炸应力波叠加后的应力状态并构建斜交叠加的峰值应力变化函数,在此基础上利用LS-DYNA软件进行等效数值模型验证,对所建立的数值模型提取一系列监测单元,结果表明:依据应力函数得出了球状药包间爆炸应力波叠加时易产生破坏的应力交角β范围在arctan λ≤β<90°内(λ为侧压应力系数);通过观测不同监测单元对应爆炸应力峰值的变化趋势发现与所建立的理论峰值应力函数模型变化趋势基本吻合,证明所总结球状药包产生的爆炸应力波叠加过程破岩规律特性与理论规律效果相符合。研究成果可为采用球状药包的破岩工程提供理论参考和依据。
Abstract
A physical model of identical spherical charges that explode synchronously was built in this research to investigate the rock-breaking characteristics of stress wave superposition between explosive packages in different sources. According to the stress state after stress superposition between two spherical charges, the function of peak stress with oblique superposition is established. Furthermore, LS-DYNA software is employed to build an equivalent numerical model to verify the formulae obtained as aforementioned. The range of rock-breaking angle (β) where the rock can be easily destroyed is acquired as arctan λ≤β<90° (λ is the coefficient of lateral compressive stress). A sequence of peak points in stress superposition area was selected as unit points to obtain the curve of numerical stress change. The theoretical result of peak stress trend is consistent in general with the numerical result, implying that the rock-breaking characteristics in stress superposition process of spherical charges in the present research accord well with theoretical characteristics. The results offer theoretical reference and guidance for blasting project with spherical charges.
关键词
爆炸应力波 /
应力波叠加 /
破岩角 /
破岩特性 /
球状药包
Key words
blasting stress wave /
stress wave superposition /
rock breaking angles /
rock breaking characteristics /
spherical charge
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YI Chang-ping, JOHANSSON D, NYBERG U,et al. Stress Wave Interaction Between Two Adjacent Blast Holes[J]. Rock Mechanics and Rock Engineering, 2016, 49: 1803-1812.
[2] 王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展[J]. 爆炸与冲击, 2001,21(2): 81-88.
[3] 杨仁树,丁晨曦,王雁冰,等.爆炸应力波与爆生气体对被爆介质作用效应研究[J].岩石力学与工程学报, 2016, 35(增刊2): 3501-3506.
[4] 杨仁树,高祥涛,车玉龙,等.基于HHT方法的爆炸应变波时频分析[J].振动与冲击,2014,33(10):17-21.
[5] 杨小林.岩石爆破损伤断裂的细观机制及其力学特性研究[D].北京:中国矿业大学,1999.
[6] BONAMY D, RAVI-CHANDAR K. Interaction of Shear Waves and Propagating Cracks[J]. Physical Review Letters, 2003, 91: 1-4.
[7] DALLY J W, FOURNEY W L, PETERSON A L. A Dynamic Photoelastic Evaluation of Some Current Practices in Smooth Wall Blasting[J]. Mining Engineering,1978, 30(2): 184-189.
[8] 王雁冰,杨仁树,丁晨曦.双孔爆炸应力波作用下缺陷介质裂纹扩展的动焦散试验[J].煤炭学报,2016, 41(7):1755-1767.
[9] 张玉柱,卢文波,陈 明,等.爆炸应力波驱动的岩石开裂机制[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3144-3149.
[10]LI J C. Wave Propagation across Non-linear Rock Joints Based on Time-domain Recursive Method[J]. Geophysical Journal International, 2013, 193(2): 970-985.
[11]李新平,董 千,刘婷婷,等.不同地应力下爆炸应力波在节理岩体中传播规律模型试验研究[J].岩石力学与工程学报, 2016, 35(11): 2188-2196.
[12]王永庆,魏晓林,夏柏如,等.爆破振动频率预测研究[J].爆破,2007,24(4):17-20.
[13]刘 慧, 冯叔瑜. 炸药单耗对爆破块度分布影响的理论探讨[J]. 爆炸与冲击, 1997,17(4): 359-362.
[14]宗 琦.岩石内爆炸应力波破裂区半径的计算[J].爆破,1994(2):15-17.
[15]李 清.爆炸致裂的岩石动态力学行为与断裂控制试验研究 [D].北京:中国矿业大学,2009.
[16]马建军.爆炸应力波的传播及其远区破坏效应研究现状评述[J].爆破,2005,28(2):182-185.
[17]郝 哲,马秀荣,王介强.两种药包落矿的爆破机理分析[J].有色矿冶.2016,17(3):7-14.
[18]叶海旺,王 进.节理岩体爆破数值模拟 [J].爆破, 2009, 26(4):13-16.
[19]楼晓明,周文海,陈必港. 基于LS-DYNA台阶微差爆破最佳延期时间的降振控制 [J]. 福州大学学报,2016, 44 (5): 753-759.
[20]梁 瑞,王树江,周文海,等.基于应力与速度时程分析的边坡开挖爆破裂纹扩展研究[J].raybet体育在线
院报,2019,36(12):71-77.
基金
国家自然科学基金项目(51566010);甘肃省自然科学基金项目(B061709)