页岩气在开采过程中不但容易污染地下水资源,而且还需要大量的水资源来保障水力压裂技术的用水量,因此预测页岩气开采区的地下水富水性对于合理保护和利用页岩气开采区的地下水资源具有重要的意义。在总结岩溶地区含水层富水性主要控制因素的基础上,利用层次分析方法(AHP)建立了融合多源信息的含水层富水性评价模型,确定了因素权重,然后利用地理信息系统(GIS)技术的信息处理和空间展示功能制作了各富水性影响因素专题图,并对各专题图进行了信息融合叠加,最终完成了凤冈页岩气开采区的含水层富水性评价预测。基于GIS技术的信息融合型含水层富水性评价方法可以有效地反映含水层富水性这一受控于多因素影响且具有非常复杂形成机理的非线性动力现象,可为页岩气开采区的地下水资源利用与保护提供依据。
Abstract
The exploitation of shale gas requires large amount of water for hydraulic fracturing on one hand, and easily pollutes groundwater on the other. Estimating the abundance of groundwater in shale gas exploitation area is of vital significance for the protection and utilization of groundwater. In this research, an assessment model for the water abundance of aquifer in karst region is built integrating multi-source information using Analytical Hierarchy Process (AHP). The influential factors of the model include unit water yield, permeability coefficient, coring rate, aquifer thickness, fault and fold distribution, and fault scale index. The weights of these factors are given, and semantic maps of these factors are acquired based on the information processing and spatial display functions of GIS technology. The zoning map of water abundance of aquifer can be obtained through fusion of the aforementioned semantic maps. GIS-based information fusion is effective in reflecting the nonlinear dynamics of aquifer’s water abundance which is controlled by multiple factors with complicated mechanism. The research method offers a reference for the groundwater utilization and protection in shale gas exploitation area.
关键词
页岩气 /
富水性 /
含水层 /
多源信息融合 /
GIS /
AHP /
评价模型
Key words
shale gas /
water abundance /
aquifer /
multi-source information fusion /
GIS /
AHP /
assessment model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张东晓,杨婷云.美国页岩气水力压裂开发对环境的影响.石油勘探与开发, 2011, 46(2): 619-627.
[2] Ground Water Protection Council. Modern Shale Gas Development in the United States: A Primer. Oklahoma City: Department of Energy and National Energy Technology Laboratory, 2009.
[3] FREYMAN M. Hydraulic Fracturing & Water Stress: Water Demand by the Numbers. Boston: CERES, 2014.
[4] 吕连宏,张型芳,庞卫科,等.实施《页岩气发展规划(2016—2020年)》的环境影响研究.天然气工业,2017,37(3):132-138.
[5] 何 敏,王 丹,张思兰,等. 浅谈页岩气开发对水环境的影响. 油气田环境保护,2016,26(2):33-37.
[6] 李 博,郭 俊,李恒凯,等.基于模糊层次分析法的地下水资源可持续性评价研究.raybet体育在线
院报,2014,31(2):20-24.
[7] 汪金伟, 吴巧生, 赵天宇. 我国页岩气勘探开发水资源约束分析. 中国国土资源经济, 2016, 29(2): 28-34.
[8] 曹建华,袁道先,章 程,等.受地质条件制约的中国西南岩溶生态系统.地球与环境,2004,32(1):1-8.
[9] 殷德威,翟所宏,刘 勇.基于岩性结构指数法的砂岩含水层富水性评价//第十届全国采矿学术会议论文集——专题一:采矿与井巷工程.中国内蒙古自治区鄂尔多斯:中国煤炭学会,2015:518-521.
[10] 吴有信,尹金柱.含水层富水性分布的瞬变电磁法探测实例.工程地球物理学报,2012,9(6):743-749.
[11] 侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法.煤炭学报,2016,41(9):2312-2318.
[12] 许树柏.层次分析法原理.天津:天津大学出版社,1998.
[13] 李 博,武 强.煤层底板突水变权脆弱性评价模型参数灵敏度分析.采矿与安全工程学报,2015,32(6):911-917.
[14] 李 博, 武 强,煤层底板突水危险性变权评价理论及其工程应用.应用基础与工程科学学报,2017,25(3):500-508.
基金
国家自然科学基金项目(41702270);贵州省科学技术基金项目(黔科合基础1413);贵州省科技计划项目(黔科合平台人才5788);贵州省教育厅青年科技人才项目(黔教合KY字113)