院报 ›› 2019, Vol. 36 ›› Issue (2): 144-150.DOI: 10.11988/ckyyb.20170657

• 仪器设备与测试技术 • 上一篇    

土-隧道结构动力相互作用振动台模型试验中传感器位置的优选

王建宁1,2,窦远明1,2,魏明3,朱旭曦4,段志慧1,田贵州1   

  1. 1.河北工业大学 土木与交通学院,天津 300401;
    2.河北省土木工程技术研究中心,天津 300401;
    3.南通大学 交通学院,江苏 南通 226019;
    4. 北京工业大学 建筑工程学院,北京 100124
  • 收稿日期:2017-06-07 修回日期:2017-07-02 出版日期:2019-02-01 发布日期:2019-03-11
  • 通讯作者: 窦远明(1956-),男,河北邯郸人,教授,博士,从事基坑工程、建筑结构抗震方面的研究工作。E-mail:douyuanming@163.com
  • 作者简介:王建宁(1992-),男,河北邢台人,博士研究生,从事地下结构抗震与综合防灾减灾方面的研究工作。E-mail:397336839@qq.com
  • 基金资助:
    国家自然科学基金项目(51008110);河北省在读研究生创新项目(CXZZBS2017033)

Optimization of Sensor Positions in Shaking Table Test for Soil-Tunnel Structure Interactions

WANG Jian-ning1,2, DOU Yuan-ming1,2, WEI Ming3, ZHU Xu-xi4, DUAN Zhi-hui1, TIAN Gui-zhou1   

  1. 1.School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China;
    2.Research Center on Civil Engineering Technology of Hebei Province, Tianjin 300401, China;
    3.School of Transportation, Nantong University, Nantong 226019, China;
    4.College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2017-06-07 Revised:2017-07-02 Online:2019-02-01 Published:2019-03-11

摘要: 基于有限元-无限元耦合分析模型,对软土地区地铁盾构隧道地震动力响应进行了分析,研究了不同地震动输入条件下地基-盾构隧道体系的加速度反应、位移反应和动应变规律,根据土-结构地震响应影响因素及特点提出了传感器的布置原则,明确了振动台试验中隧道结构的观测面位置及测点处的主要观测指标。结果表明:地基土对地震波的传播具有高频过滤、低频放大作用,地基中的加速度放大系数与埋深和加载波形有关;隧道结构动应力反应在与拱顶、拱底成30°圆心角附近达到最大,是应变量测的重点位置;结构不同高度处的加速度反应和接触土压力不同,沿结构高度布置传感器可量测各点动力差异及变化规律;观测面距离结构端部0.26D(D为结构宽度)处的端部效应可达13.58%,约为观测面距结构端部1D处的3倍,在选择主、辅观测面时应尽量远离结构端部1D。提出的量测方案为开展地铁盾构隧道振动台模型试验数据采集提供了保证,亦可为其他地下结构模型试验测点布置提供参考。

关键词: 地下工程, 盾构隧道, 数值分析, 模型试验, 传感器

Abstract: The seismic responses of metro shield tunnel in soft soil area were analyzed by using finite-infinite element coupled analysis model. The acceleration responses, the displacement responses and the law of dynamic strain of soil-metro shield tunnel system were studied. According to the influential factors and characteristics of soil-metro structure’s seismic responses, the layout principle of sensors was summarized, which defined the location of the observation section and the main observation indexes of shield tunnel structure in shaking table test. Results unveiled that the high-frequency component of seismic waves were filtered and the low-frequency component were amplified by foundation soil. The acceleration amplification factor of foundation was related with buried depth and seismic waveform. The maximal seismic stress responses of tunnel structure were located in an angle of 30° to the top and the bottom of tunnel which can be considered as the key points of strain measurement. The acceleration responses and dynamic pressures between structure and soil varied with height, hence the dynamic differences and variations of each point can be measured by arranging sensors at different heights of the structure. At the end of the structure, the end restraint effect on observation section 0.26D(D represents the structure width) away from the end of the structure reached 13.58%, which is about 3 times that 1D from the end. Therefore, the main and auxiliary observation sections should be at least 1D away from the end of the structure. The proposed measurement scheme in this paper guaranteed the data collection in shaking table test of metro shield tunnel and provided a reference for other model tests of underground structures.

Key words: underground engineering, shield tunnel, numerical analysis, shaking table test, sensors

中图分类号: 

Baidu
map