武汉地区溶洞存在埋深较浅、溶洞高度较小、地下水“高水头”等特征。基于这些特征,利用MIDAS GTS进行数值正交试验,分析了武汉地铁27号线围岩水平、侧压力系数、溶腔跨度、溶腔高跨比、渗透系数等对隧道与溶洞安全距离的影响规律和显著性。研究结果表明:隐伏溶洞位于隧道下方、侧方或上方工况条件下,围岩水平、溶腔跨度均会对隧道与溶洞的安全距离有显著影响,而渗透系数对其并无显著影响;侧压力系数只在隐伏溶洞位于隧道下方时有显著影响;溶腔高跨比只在隐伏溶洞位于隧道侧方时有显著影响。结合试验结果的非线性多元回归分析,分别建立溶洞在隧道下方、侧方、上方时的隧道与溶洞安全距离预测模型;通过工程实例的检验与应用,该分析方法可靠合理,可为类似工程提供借鉴和参考。
Abstract
Karst caves in Wuhan are featured with shallow buried depth, small height, and high-head groundwater. Through numerical orthogonal test by MIDAS GTS, the significance of five major factors affecting the safe distance between the tunnel of Wuhan metro line 27 and the hidden karst caves is examined. The five major factors involve surrounding rock level, lateral pressure coefficient, span of cave, ratio of height to span of cave, and permeability coefficient. Results suggest that surrounding rock level and span of cave have significant impact on the safe distance between tunnel and cave whether the peripheral cave is located below, lateral to or above the tunnel, while permeability coefficient has no significant effect. Lateral pressure coefficient has a significant effect only when the peripheral cave is located beneath the tunnel. The ratio of height to span of cave has a significant influence only when the peripheral cave is located lateral to the tunnel. In association with nonlinear multiple regression analysis on the results, formulas for estimating the safe distance between tunnel and cave when caves are located below, lateral to and above tunnel are obtained. Case study proves that the proposed formulas are reliable.
关键词
隐伏溶洞 /
地铁隧道 /
安全距离 /
正交试验 /
方差分析 /
多元回归分析
Key words
peripheral karst cave /
subway tunnel /
safe distance /
numerical orthogonal test /
variance analysis /
multiple regression analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 武卫星,欧阳院平. 武汉轨道交通2号线岩溶地段隧道工法研究[J]. 人民长江, 2011, 42(20): 80-85.
[2] 杨育文,敖晨霞, 熊增强. 武汉地质条件与城市地质问题概述[J]. 城市勘测, 2015, (6): 148-154.
[3] 李慎奎,陶 岚. 武汉地区岩溶发育特征及地铁工程中岩溶处理[J]. 隧道建设, 2015, 35(5): 450-455.
[4] 张三定. 武汉地区浅部岩溶地下水对地下工程的影响研究[J]. 现代隧道技术,2014,51(增1):111-116.
[5] 郭佳奇,乔春生. 椭圆孔口塑性区及其在岩溶隧道工程中的应用[J].铁道学报, 2013,35(3): 108-113.
[6] 张 梅.宜万铁路岩溶断层隧道修建技术[M]. 北京:科学出版社,2010.
[7] 付 敬,丁秀丽,张 练. 岩溶回填改善地下洞室群围岩稳定性的数值分析[J]. raybet体育在线
院报, 2006, 23(4):47-50.
[8] 屈若枫. 武汉地铁穿越区岩溶地面塌陷过程及其对隧道影响特征研究[D].武汉:中国地质大学,2017.
[9] 曹 茜.岩溶隧道与溶洞的安全距离研究[D].北京:北京交通大学,2010.
[10]臧守杰.强岩溶区隧道施工中隧底最小安全厚度分析研究[J]. 隧道建设, 2007, 27(5): 17-23.
[11]吴治生,张 杰. 岩溶隧道风险影响因素及评估[J].铁道工程学报, 2011, (10):92-96.
[12]王 勇,乔春生,孙彩红,等. 基于SVM的溶洞顶板安全厚度智能预测模型[J].岩土力学,2006,27(6):1000-1004.
基金
国家自然科学基金项目(41372313);武汉市“黄鹤英才(科技)计划”资助项目