为研究周期荷载下岩石疲劳变形特性,基于分数阶微积分构建分数阶黏壶,将分数阶黏壶替换西原模型黏塑性体中的一般黏壶,并在西原模型中串联一个黏性元件,分别建立了可描述周期荷载下岩石变形规律的一维和三维分数阶黏弹塑性本构模型。在高动应力状态下,模型为反映岩石减速、等速、加速3个变形阶段变形规律的岩石分数阶黏弹塑性疲劳本构模型;反之,则为反映岩石减速、加速变形规律的Burgers模型。对既有的岩石疲劳试验结果拟合表明:基于分数阶黏弹塑性模型所建立的岩石疲劳本构方程可较好地描述周期荷载下岩石各种变形特征,拟合系数在0.96以上。研究成果可丰富岩石力学理论,为相关研究提供参考。
Abstract
In order to study the fatigue deformation characteristics of rock under cyclic loading, we established
one-dimensional and three-dimensional Fractional-order Visco-Elasto-Plastic Constitutive Model (FVEPCM) by replacing the common dashpot in viscoplastic body of Nishihara’s model with the fractional-order dashpot and connecting a viscous element in series in Nishihara’s model. Under high dynamic stress, the model is a FVEPCM reflecting the three states of rock fatigue deformation: deceleration stage, constant velocity stage, and acceleration stage; otherwise, it is a Burgers Model which reflects the two states of rock fatigue deformation: deceleration, and constant velocity stage. Fitting of the existing rock fatigue test results shows that the fatigue constitutive equation for rock based on FVEPCM can be used to better describe different deformation characteristics of rock under cyclic loading, and the effect of fitting to various types of deformation curves of rock is good, with the fitted correlation coefficients above 0.96.
关键词
岩石力学 /
周期荷载 /
分数阶黏壶 /
Burgers模型 /
黏弹塑性 /
疲劳变形
Key words
rock mechanics /
cyclic loading /
fractional-order dashpot /
Burgers Model /
visco-elasto-plasticity /
fatigue deformation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭建强,黄质宏.循环荷载作用下岩石疲劳本构模型初探[J].岩土工程学报,2015,37(9):1698-1704.
[2] 张平阳,夏才初,周舒威,等.循环加-卸载岩石本构模型研究[J].岩土力学,2015,36(12):3354-3359.
[3] 王 春,唐礼忠,程露萍,等.一维高应力及重复冲击共同作用下岩石的本构模型[J].岩石力学与工程学报,2015,34(1): 2868-2878.
[4] 刘文韬,王肖钧,周 钟,等.岩石的连续损伤本构模型及在地下爆炸波数值计算中的应用[J].岩石力学与工程学报,2004,23(13):2149-2156.
[5] 赵怡晴,刘红岩,吕淑然,等.基于变形元件的节理岩体三轴压缩损伤本构模型[J].中南大学学报(自然科学版),2015,46(3):991-996.
[6] 孟红霞,陈德春,吴飞鹏,等.岩石冲击开裂试验峰值压力和加压速率计算模型[J].石油钻探技术,2007,35(4):28-31.
[7] 杨永杰,宋 扬,楚 俊.循环荷载作用下煤岩强度及变形特征试验研究[J].岩石力学与工程学报,2007,26(1):201-205.
[8] 唐礼忠,武建力,刘 涛,等.大理岩在高应力状态下受小幅循环动力扰动的力学试验[J].中南大学学报(自然科学版),2014,45(12):4301-4307.
[9] 王军保,刘新荣,黄 明,等.低频循环荷载下盐岩轴向蠕变的 Burgers 模型分析[J].岩土力学,2014,35(4):934-942.
[10]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J] .岩石力学与工程学报,1995,14(1):39-47.
[11]陶 波,伍法权,郭改梅,等.西原模型对岩石流变特性的适应性及其参数确定[J].岩石力学与工程学报,2005,24(17): 3165-3171.
[12]浦少云,饶军应,杨凯强,等.循环荷载下土体变形特性研究[J].岩土力学,2017,38(11):3262-3270.
[13]肖建清,丁德馨,徐 根,等.常幅循环荷载下岩石的变形特性[J].中南大学学报(自然科学版),2010,41(2):685-691.
[14]赵 凯,乔春生,罗富荣,等.不同频率循环荷载下石灰岩疲劳特性试验研究[J].岩石力学与工程学报,2014,33(增2): 3466-3475.
[15]章清叙,葛修润,黄 铭,等.周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J].岩石力学与工程学报,2006, 25(3):473-478.
[16]丁祖德,彭立敏,施成华,等.循环荷载作用下富水砂质泥岩动变形特性试验研究[J].岩土工程学报,2012,34(3):534-539.
[17]葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.