大坝混凝土分数阶徐变模型探讨

刘钰,黄耀英,唐腾飞,肖磊,高俊

raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (6) : 107-110.

PDF(1795 KB)
PDF(1795 KB)
raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (6) : 107-110. DOI: 10.11988/ckyyb.20170190
水工结构与材料

大坝混凝土分数阶徐变模型探讨

  • 刘钰1,黄耀英1,唐腾飞2,肖磊1,高俊1
作者信息 +

A Fractional Order Creep Model of Dam Concrete

  • LIU Yu1, HUANG Yao-ying1, TANG Teng-fei2, XIAO Lei1, GAO Jun1
Author information +
文章历史 +

摘要

混凝土是一种介于理想固体与流体之间,与加载龄期和持荷时间有关的徐变材料。针对分数阶微积分可描述处于理想固体与流体之间不同状态的流变行为,建议将分数阶模型应用于混凝土徐变模型分析。首先基于带软体元件的广义开尔文模型,建立了5参数分数阶徐变模型;接着结合复合形优化算法反演出混凝土分数阶徐变模型的5个参数。工程算例分析表明,分数阶徐变模型计算值与试验值吻合效果良好,且与8参数模型拟合效果相当,将分数阶流变模型应用在混凝土徐变中为混凝土徐变分析提供了一种新思路。

Abstract

Concrete, a creep material between ideal solid and fluid, is related to loading age and load-bearing time. In this article, the fractional order calculus model is applied to the analysis of concrete’s creep. A fractional order creep model with five parameters is established based on the generalized Kelvin model with software components. Furthermore, according to measured creep values of three engineering cases, the five parameters of the established fractional order creep model are inverted and optimized by using the complex optimization algorithm. The expressions of concrete creep model in consideration of loading age are given. Engineering case study demonstrates that the calculated values of the fractional order model agree well with test values, close to those of eight-parameter model. Fractional order model could be a new approach in creep analysis of concrete.

关键词

混凝土 / 分数阶微积分 / 徐变模型 / 优化拟合 / 加载龄期

Key words

concrete / fractional order calculus / creep model / optimization algorithm / loading age

引用本文

导出引用
刘钰,黄耀英,唐腾飞,肖磊,高俊. 大坝混凝土分数阶徐变模型探讨[J]. raybet体育在线 院报. 2018, 35(6): 107-110 https://doi.org/10.11988/ckyyb.20170190
LIU Yu, HUANG Yao-ying, TANG Teng-fei, XIAO Lei, GAO Jun. A Fractional Order Creep Model of Dam Concrete[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(6): 107-110 https://doi.org/10.11988/ckyyb.20170190
中图分类号: TV642   

参考文献

[1] 黄国兴,惠荣炎,王秀军.混凝土徐变与收缩.北京:中国电力出版社,2011.
[2]NEVILLE A M, DILGER W H, BROOKS J J. Creep of Plan and Structural Concrete. New York:Construction Press,1983.
[3]潘钻峰,吕志涛,刘 钊,等.高强混凝土收缩徐变试验及预测模型研究.公路交通科技,2010,27(12):10-15.
[4]潘立本,张苏俊.混凝土收缩与徐变的实验研究.河海大学学报(自然科学版),1997,25(5):84-89.
[5]曹国辉,胡佳星,张 锴,等.混凝土徐变预测模型修正分析.建筑结构,2014,(4):45-49.
[6]朱伯芳.关于混凝土徐变理论的几个问题.水利学报,1982,29(3):35-40.
[7]陈家瑞,浦 海,肖 成,等.基于分数阶理论的破碎泥岩流变模型试验研究.中国矿业大学学报,2015,44(6): 996-1001.
[8]张 昊,缪仲翠,张永义,等.基于分数阶PI~λ控制器的永磁同步电动机调速系统研究.电气应用,2015,(23):50-54.
[9]潘晓明,杨绪君,李传东.时滞分数阶神经网络的稳定性分析.西南大学学报(自然科学版),2016,38(5): 168-173.
[10]黄耀英,郑 宏.整数及分数阶流变模型研究及应用.北京:中国水利水电出版社,2016.
[11]黄耀英,郑 宏.分数阶微积分流变模型在岩体结构加速流变破坏分析中的应用.计算机辅助工程,2010,19(4):20-24.
[12]朱伯芳. 大体积混凝土温度应力与温度控制.北京:中国电力出版社,1999.
[13]龚 纯,王正琳. 精通MATLAB最优化计算.北京:电子工业出版社,2012.
[14]李洋波,李 翔,黄达海.混凝土徐变度反演分析方法. 三峡大学学报(自然科学版),2005,27(2):134-136.

基金

国家自然科学基金项目(51779130)

PDF(1795 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map